Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T21:56:23.706Z Has data issue: false hasContentIssue false

Effects of dietary phosphorus and calcium on the intestinal absorption of Ca in sheep

Published online by Cambridge University Press:  24 July 2007

H. M. Abdel-Hafeez
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, LS2 9JT
M. Mañas-Almendros
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, LS2 9JT
R. Ross
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, LS2 9JT
A. D. Care
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, LS2 9JT
D. H. Marshall
Affiliation:
MRC Mineral Metabolism Research Unit, Leeds General Infirmary, Leeds LS1 3EX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Wether sheep were used, some of which were prepared with a Thiry-Vella loop of jejunum. The long-term use of these loops was ensured by regular perfusion with fresh nutrient solution.

2. The net calcium absorption rale from a Thiry-Vella loop of jejunum increased with increasing intraluminal Ca concentration and was increased by the addition of 1 α-hydroxy-cholecalciferol (3μg/l) to the loop fluid.

3. When the diet of sheep was changed from one which was normal in Ca to a diet low in Ca there was an increase in the efficiency of net Ca absorption from the jejunal loop. This dietary change was accompanied by an increase in the circulating concentration of 1,25-dihydroxy-cholecalciferol (1.25(OH)2D3).

4. An intravenous infusion of the Ca chelating agent EDTA increased the efficiency of net Ca absorption from the jejunal loop. The use of 47Ca demonstrated that this reflected an increase in the true absorption rate of Ca.

5. Dietary phosphorus deficiency reduced the efficiency of intestinal Ca absorption and was associated with a reduction in the plasma concentration of 1,25(OH)2D3.

Type
Paper on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Boyle, I. T., Gray, R. W. & DeLuca, H. F. (1971). Proc. natl Acad. Sci. U. S. A. 68, 2131.CrossRefGoogle Scholar
Braithwaite, G. D. (1974). Br. J. Nutr. 31, 319.CrossRefGoogle Scholar
Braithwaite, G. D. (1975). Br. J. Nutr. 34, 331.CrossRefGoogle Scholar
Care, A. D., Keynes, W. M. & Duncan, T. (1966). J. Endocr. 34, 299.CrossRefGoogle Scholar
Care, A. D. & van't Klooster, A. T. (1965). J. Physiol., Lond. 177, 174.CrossRefGoogle Scholar
Chesters, J. K. & Quarterman, J. (1970). Br. J. Nutr. 24, 1061.CrossRefGoogle Scholar
Clemens, T. L., Hendy, G. N., Graham, R. F., Baggiolini, E. G., Uskokovic, M. R. & O'Riordan, J. L. H. (1978). Clin. Sci. Mol. Med. 54, 329.Google Scholar
Clemens, T. L., Hendy, G. N., Papapoulos, S. E., Fraher, L. J., Care, A. D. & O'Riordan, J. L. H. (1979). Clin. Endocr. 11, 225.CrossRefGoogle Scholar
Fox, J. & Care, A. D. (1978). J. Endocr. 77, 225.CrossRefGoogle Scholar
Fox, J. & Care, A. D. (1979). J. Endocr. 82, 417.CrossRefGoogle Scholar
Fox, J., Care, A. D. & Swaminathan, R. (1978). Br. J. Nutr. 39, 431.CrossRefGoogle Scholar
Fox, J., Swaminathan, R., Murray, T. M. & Care, A. D. (1977). J. Endocr. 74, 345.CrossRefGoogle Scholar
Hughes, M. R., Brumbaugh, P. F., Haussler, M. R., Wergedal, J. E. & Baylink, D. J. (1975). Science, N. Y. 190, 578.CrossRefGoogle Scholar
Hydén, S. (1955). K. LantbrHögsk. Annlr. 22, 139.Google Scholar
Kemm, J. R. (1976). J. Physiol., Lond. 256, 103.CrossRefGoogle Scholar
Mañas-Almendros, M., Ross, R. & Care, A. D. (1982). Q. J. exp. Physiol. (In the Press).Google Scholar
Marshall, D. H. (1976). In Calcium, Phosphate and Magnesium Metabolism, p. 257 [Nordin, B. E. C., editor]. Edinburgh: Churchill Livingstone.Google Scholar
Morrissey, R. L. & Wasserman, R. H. (1971). Am. J. Physiol. 220, 1509.CrossRefGoogle Scholar
Nicolaysen, R., Eeg-Larsen, N. & Malm, O. J. (1953). Physiol. Rev. 33, 424.CrossRefGoogle Scholar
Payne, J. M. & Chamings, J. (1964). J. Endocr. 28, 19.CrossRefGoogle Scholar
Phillipson, A. T. & Storry, J. E. (1965). J. Physiol., Lond. 181, 130.CrossRefGoogle Scholar
Pickard, D. W. (1975). Br. vet. J. 131, 744.CrossRefGoogle Scholar
Scott, D. (1965). Q. Jl exp. Physiol. 50, 312.CrossRefGoogle Scholar
Technicon Instruments Co. Ltd (1965). Tech. Bull. nos. N3b, N4b. Terrytown, N. Y.: Technicon Instruments Co. Ltd.Google Scholar
van't Klooster, A. Th. (1976). Z. Tierphysiol. Tierernähr. Futtermitt. 37, 169.CrossRefGoogle Scholar
Wasserman, R. H. & Taylor, A. N. (1968). J. biol. Chem. 243, 3987.CrossRefGoogle Scholar
Westerhuis, J. H. (1976). Proc. 3rd int. Conf. Production Disease in Farm Animals, p. 119. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Young, V. R., Richard, W. P. C., Lofgreen, G. P. & Luick, J. R. (1966). Br. J. Nutr. 20, 783.CrossRefGoogle Scholar