Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T09:36:52.107Z Has data issue: false hasContentIssue false

Glucose and urea kinetics in cows in early lactation

Published online by Cambridge University Press:  09 March 2007

I. Bruckental
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berks. RG2 9AT
J. D. Oldham
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berks. RG2 9AT
J. D. Sutton
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berks. RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Four mature Friesian cows were used. For 2 weeks after calving they were fed 3 kg hay (147 g crude protein (nitrogen × 6·25; CP)/kg dry matter (DM)) plus 9 kg concentrates (177 g CP/kg DM) per d and thereafter 4 kg hay plus 12 kg concentrates/d.

2. At approximately the 2nd, 4th and 9th weeks post-partum each cow was given a single intravenous dose of [14C]urea (1 mCi) and [6-3H]glucose (1·5 mCi). Following this, jugular venous blood samples were withdrawn up to 26 h post-injection.

3. The log (specific activity) v time curves were not linear for either metabolite. Glucose irreversible loss rates (IRL) were calculated by a stochastic procedure. The linear part of the urea log (specific activity) v. time curve gave the same estimate for urea IRL rate as a stochastic method of calculation, but urea pool sizes were overestimated so that stochastic analysis of results was preferred.

4. Mean milk yields at the time of the three measurements were 27·1, 30·8 and 27·9 kg milk/d.

5. Urea IRL was significantly lower (P < 0·05) in the first 4 weeks of lactation than in the 9th, and blood urea concentration was lower (P < 0·05) in the 4th than in the 2nd and 9th week, but there was no close correlation between urea IRL and concentration.

6. Glucose IRL rose (P < 0·05) between the 2nd and 9th weeks post-partum, perhaps due to the increase in feed intake. The results were generally consistent with the relationship between milk yield and glucose IRL established by Paterson & Linzell (1974).

7. Urea IRL (y) and milk protein-N (x) production values were used to calculate the efficiency of protein utilization (EPU) as x ÷ (x + 0·35 y). This assumes that 0·35 of urea IRL was due to protein catabolism. EPU was found to be 0·59–0·80 (mean 0·69).

8. The possible contribution of catabolized amino acids to glucose IRL was calculated by assuming that 0·35 of urea IRL was due to protein catabolism and 0·2 of catabolized protein-C passed through the glucose pool. On this basis the contribution of protein-C to glucose-C was < 25 g/kg glucose IRL.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Agricultural Research Council (1965). Nutrient Requirements of Farm Livestock. No. 2, Ruminants. London. H.M. Stationery Office.Google Scholar
Allen, S. A. & Miller, E. L. (1976). Br. J. Nutr. 36, 353.CrossRefGoogle Scholar
Annison, E. F., Bickerstaffe, R. & Linzell, J. L. (1974). J. agric. Sci., Camb. 82, 87.CrossRefGoogle Scholar
Bennink, M.R., Mellenberger, R. W., Frobish, R. A. & Bauman, D. E. (1972). J. Dairy Sci. 55, 712.Google Scholar
Bergman, E. N. & Hogue, D. E. (1967). Am. J. Physiol. 213, 1378.CrossRefGoogle Scholar
Bickerstaffe, R., Annison, E. F. & Linzell, J. L. (1974). J. agric. Sci., Camb. 82, 71.CrossRefGoogle Scholar
Black, A. L., Egan, A. R., Anand, R. S. & Chapman, T. W. (1968). Isotope Studies on the Nitrogen Chain, p. 247. Vienna: International Atomic Energy Agency.Google Scholar
Bradbury, M. W. B. (1961). Br. J. Nutr. 15, 177.CrossRefGoogle Scholar
Bradbury, M. W. B. & Coxon, R. V. (1962). J. Physiol. Lond. 163, 423.CrossRefGoogle Scholar
Brockman, R. P., Bergman, E. N., Pollak, W. L. & Brondum, J. (1975). Can. J. Physiol. Pharmacol. 53, 1186.CrossRefGoogle Scholar
Bruckental, I., Oldham, J. D. & Sutton, J. D. (1978). Proc. Nutr. Soc. 37, 107A.Google Scholar
Cocimano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.CrossRefGoogle Scholar
Conrad, H. R. (1972). Tracer Studies on Non-Protein Nitrogen for Ruminants, p. 69. Vienna: International Atomic Energy Agency.Google Scholar
Ellenberger, H. B., Newlander, J. A. & Jones, C. H. (1950). Vermont Agr. Exp. Sta. Bull. no. 558.Google Scholar
Engelhardt, W. v., Hinderer, S. & Wipper, E. (1978). In Ruminant Digestion and Feed Evaluation, p. 41. [Osbourn, D. F., Beever, D. E. & Thomson, D. J. editors]. London: Agricultural Research Council.Google Scholar
Evans, E., Buchanan-Smith, J. G., MacLeod, G. K. & Stone, J. B. (1975). J. Dairy Sci. 58, 672.CrossRefGoogle Scholar
Ford, A. L. & Milligan, L. P. (1970). Can. J. Anim. Sci. 50, 129.CrossRefGoogle Scholar
Horsfield, S., Infield, J. M. & Annison, E. F. (1974). Proc. Nutr. Soc. 33, 9.Google Scholar
Hunter, G. D. & Millson, G. C. (1964). Res. vet. Sci. 5, 1.CrossRefGoogle Scholar
Jones, G. B. (1965). Analyt. Biochem. 12, 249.CrossRefGoogle Scholar
Judson, G. J. & Leng, R. A. (1968). Proc. Ausr. Soc. Anim. Prod. 7, 354.Google Scholar
Judson, G. J. & Leng, R. A. (1972). Aust. J. biol. Sci, 25, 1313.CrossRefGoogle Scholar
Kamal, T. H. & Seif, S. M. (1969). J. Dairy Sci. 9, 1650.CrossRefGoogle Scholar
Katz, J., Rostami, H. & Dunn, A. (1974). Biochem. J. 142, 161.Google Scholar
Krebs, H. A. (1964). In Mammalian Protein Metabolism, vol. 1, p. 125. [Munroe, H. N. & Allison, J. B., editors]. New York: Academic Press.CrossRefGoogle Scholar
Kronfeld, D. S. (1977). Fedn Proc. Fedn Am. Socs exp. Biol. 36, 259.Google Scholar
Kronfeld, D. S., Raggi, F. & Ramberg, C. F. (1968). Am. J. Physiol. 215, 218.CrossRefGoogle Scholar
Lindsay, D. B. (1976). In Protein Metabolism & Nutrition, p. 186. [Cole, D. J. A., editor]. London: Butterworths.Google Scholar
Lindsay, D. B. (1979). Proc. Nutr. Soc. 38, 295.Google Scholar
McCance, R. A. & Widdowson, E. M. (1951). Proc. R. Soc. B 138, 115.Google Scholar
Mahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed.New York: Harper &Row.Google Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clin. Chem. 11, 624.CrossRefGoogle Scholar
Mugerwa, J. S. & Conrad, H. R. (1971). J. Nutr. 101, 1331.Google Scholar
Nolan, J. V. (1975). In Digestion and Metabolism in the Ruminant, p. 416 [McDonald, I. W. & Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Nolan, J. V. & Leng, R. A. (1970). Br. J. Nutr. 24, 905.Google Scholar
Oldham, J. D. (1978). In Ruminant Digestion ond Feed Evaluation, p. 13.1 [Osbourn, D. F., Eeever, D. E. & Thomson, D. J., editors]. London: Agricultural Research Council.Google Scholar
Oldham, J. D. (1979). In Protein Metabolism in the Ruminant. p. 5.1. [Buttery, P. J., editor]. London: Agricultural Research Council.Google Scholar
Oldham, J. D., Bruckental, I. & Nissenbaum, A. (1980). J. agric. Sci., Camb. (In the Press.)Google Scholar
Oldham, J. D., Sutton, J. D. & McAllan, A. B. (1979). Ann. Reek Vet. 10, 290.Google Scholar
Ørskov, E. R. & Grubb, D. A. (1979). Proc. Nutr. Soc. 38, 24A.Google Scholar
Paterson, J. Y. F. & Linzell, J. L. (1974). J. Endocr. 62, 371.CrossRefGoogle Scholar
Reilly, P. E. B. & Ford, E. J. H. (1971). Br. J. Nutr. 26, 249.CrossRefGoogle Scholar
Roy, J. H. B., Balch, C. C., Miller, E. L., ørskov, E. R. & Smith, R. H. (1977). In Protein Metabolism and Nutrition, p. 126 [Tamminga, S., editor]. Wageningen: Pudoc.Google Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for in vivo Kinetics. New York: Academic Press.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed. Ames: The lowa State University Press.Google Scholar
Somogyi, M. (1945). J. BiolGem. 160, 69.Google Scholar
Treacher, R. J., Little, W., Collis, K.A. & Stark, A. J. (1976). J. Dairy Res. 4, 357.CrossRefGoogle Scholar
Werner, W., Rey, H. G. & Wielinger, H. (1970). Z. analyt. Chem. 252, 224.CrossRefGoogle Scholar