Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T03:53:05.009Z Has data issue: false hasContentIssue false

Influence of antibiotics and food intake on liver glutathione and cytochrome P-450 in septic rats

Published online by Cambridge University Press:  09 March 2007

Virginie Colomb
Affiliation:
Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, Université de Rouen, Hôpital Charles Nicolle, 76031, Rouen-Cédex, France
Jean Petit
Affiliation:
Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, Université de Rouen, Hôpital Charles Nicolle, 76031, Rouen-Cédex, France
Hélène Matheix-Fortunet
Affiliation:
Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, Université de Rouen, Hôpital Charles Nicolle, 76031, Rouen-Cédex, France
Bernadette Hecketsweiler
Affiliation:
Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, Université de Rouen, Hôpital Charles Nicolle, 76031, Rouen-Cédex, France
Nathalie Kaeffer
Affiliation:
Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, Université de Rouen, Hôpital Charles Nicolle, 76031, Rouen-Cédex, France
Eric Lerebours
Affiliation:
Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, Université de Rouen, Hôpital Charles Nicolle, 76031, Rouen-Cédex, France
Raymond Colin
Affiliation:
Groupe de Biochimie et de Physiopathologie Digestive et Nutritionnelle, Université de Rouen, Hôpital Charles Nicolle, 76031, Rouen-Cédex, France
Jean-François Lemeland
Affiliation:
Laboratoire de Bactériologie, Université de Rouen, Hôpital Charles Nicolle, 76031 Rouen-Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experimental sepsis in rats induces a restriction in spontaneous food intake and a drop in liver glutathione, cytochrome P-450 (P-450) and aminopyrine demethylase (AD) activity. The present study was designed to assess the effects of antibiotics alone or when combined with food deprivation on these variables. Eighty-nine male Sprague-Dawley rats were assigned to six groups: control (C), acute infection (experimental pyelonephritis, I), acute infection with antibiotics and food given ad lib. (IA), control with antibiotics (CA), acute infection with antibiotics pair-fed to I (IAR), and sham-operated pair-fed to I (SR). Liver glutathione, P-450 and AD activities were reduced by 45·2, 79·8 and 41·2% respectively in group I. Glutathione and AD significantly increased only in those infected rats given antibiotics and allowed free access to food. P-450 did not normalize within the study period in infected rats receiving antibiotics and food repletion. The risk of drug hepatotoxicity in acute septic states is therefore closely related to the nutritional status. From this point of view, nutritional support is almost as important as treatment of infection.

Type
Immunity, nutrition and growth performance
Copyright
Copyright © The Nutrition Society 1995

References

REFERENCES

Baracos, V., Rodemann, H. P., Dinarello, C. A. & Goldberg, A. L. (1983) Stimulation of muscle protein degradation and prostaglandin E2 release by leucocytic pyrogen (interleukin-1). New England Journal of Medicine 308, 553558.Google Scholar
Beutler, E. (1989) Nutritional and metabolic aspects of glutathione. Annual Review of Nutrition 9, 287302.Google Scholar
Bissel, D. M. & Hammaker, L. (1976) Cytochrome P-450 heme and the regulation of hepatic heme oxygenase activity. Archives of Biochemistry and Biophysics 176, 91102.Google Scholar
Bock, K. W., Froling, W. & Remmer, H. (1973) Influence of fasting and hemin on microsomal cytochromes and enzymes. Biochemical Pharmacology 22, 15571564.Google Scholar
Boyd, M. R., Grygiel, J. J. & Minchin, R. F. (1983) Metabolic activation as a basis for organ-selective toxicity. Clinical and Experimental Pharmacology and Physiology 10, 8799.CrossRefGoogle ScholarPubMed
Brooks, S. J. D., Lyons, J. M. & Braude, A. I. (1974) Immunization against retrograde pyelonephritis. I. Production of an experimental model of severe ascending Escherichia coli pyelonephritis without bacteremia in rats. American Journal of Pathology 14, 345358.Google Scholar
Campbell, T. C. (1977) Nutrition and drug-metabolizing enzymes. Clinical Pharmacology and Therapeutics 22, 699706.CrossRefGoogle ScholarPubMed
Cho, E. I., Sahyoun, N. & Stegink, L. D. (1981) Tissue glutathione as a cyst(e)ine reservoir during fasting and refeeding of rats. Journal of Nutrition 111, 914922.CrossRefGoogle ScholarPubMed
Clemens, M. G., Chaudry, I. H. & Baue, A. E. (1984) Alterations in hepatic water and electrolyte balance in sepsis. Archives of Surgery 119, 4448.Google Scholar
Clowes, G. H. A., George, B. C., Villee, C. A. & Saravis, C. A. (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. New England Journal of Medicine 308, 545552.CrossRefGoogle ScholarPubMed
Cooper, T. B., Simpson, G. M. & Lee, H. J. (1976) Thymoleptic and neuroleptic drug plasma levels in psychiatry: current status. International Review of Neurobiology 19, 269309.CrossRefGoogle ScholarPubMed
Cox, J. E., Laughton, W. B. & Powley, T. I. (1985) Precise estimation of carcass fat from total body water in rats and mice. Physiology and Behavior 35, 905910.Google Scholar
Edwards, S. & Westerfeld, W. W. (1952) Blood and liver glutathione during protein deprivation. Proceedings of the Society for Experimental Biology and Medicine 79, 5759.Google Scholar
Ellman, G. L. (1959) Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82, 7077.CrossRefGoogle ScholarPubMed
Feldman, C. H., Hutchinson, V. E., Pippenger, C. E., Blumenfeld, T. A., Feldman, B. R. & Davis, W. J. (1980) Effect of dietary protein and carbohydrate on theophylline metabolism in children. Pediatrics 66, 956962.Google Scholar
Fouin-Fortunet, H., Besnier, M. O., Colin, R., Wessely, J. Y. & Rosé, F. (1989 a) Effect of ketoacids on liver glutathione and microsomal enzymes in malnourished rats. Kidney International 36, 222226.Google Scholar
Fouin-Fortunet, H., Delarue, J., N'Djitoyap, C., Desechalliers, J. P., Denis, P., Lerebours, E. & Colin, R. (1990) Nutritional status modifies liver glutathione levels in man. European Journal of Gastroenterology and Hepatology 2, 271275.Google Scholar
Fouin-Fortunet, H., Delarue, J., Rod, F., Desechalliers, J. P., Sauger, F., Lerebours, E., Denis, P., Besnier, M. O., Wessely, J. Y. & Colin, R. (1989 b) Rehabilitation of microsomal enzymes in malnourished rats: comparison of parenteral versus oral refeeding. Clinical Nutrition 8, 101108.CrossRefGoogle ScholarPubMed
Freund, H. R., Ryan, J. A. & Fischer, J. E. (1978) Amino acid derangements in patients with sepsis: treatment with branched chain amino acid-rich infusions. Annals of Surgery 188, 423430.CrossRefGoogle ScholarPubMed
Ghezzi, P., Saccardo, B. & Bianchi, M. (1986 a) Recombinant tumor necrosis factor depresses P-450 dependent microsomal drug metabolism in mice. Biochemical and Biophysical Research Communications 136, 316321.Google Scholar
Ghezzi, P., Saccardo, B., Villa, P., Rossi, V., Bianchi, M. & Dinarello, C. A. (1986 b) Role of interleukin-1 in the depression of liver drug metabolism by endotoxin. Infection and Immunity 54, 837840.Google Scholar
Glauser, M. P., Lyons, J. M. & Braude, A. I. (1978) Prevention of chronic experimental pyelonephritis by suppression of acute suppuration. Journal of Clinical Investigation 61, 403407.Google Scholar
Gornall, A. G., Badawill, C. J. & David, M. M. (1949) Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177, 751766.CrossRefGoogle ScholarPubMed
Hong, J., Pan, J., Gonzales, F. J., Gelboin, H. V. & Yang, C. S. (1987) The induction of a specific form of cytochrome P-450 (P-450) by fasting. Biochemical and Biophysical Research Communications 142, 10771083.CrossRefGoogle ScholarPubMed
Hum, S., Koski, K. G. & Hoffer, L. J. (1992) Varied protein intake alters glutathione metabolism in rats. Journal of Nutrition 122, 20102018.CrossRefGoogle ScholarPubMed
Kaplowitz, N. (1981) The importance and regulation of hepatic glutathione. Yale Journal of Biology and Medicine 54, 497502.Google ScholarPubMed
Kato, R., Oshima, T. & Tomisawa, S. (1968) Toxicity and metabolism of drugs in relation to dietary protein. Japanese Journat of Pharmacology 18, 356366.Google Scholar
Lescut, D., Fouin-Fortunet, H., Moore, N., Petit, J., Hecketsweiler, B., Lemeland, J. F., Denis, P. & Colin, R. (1991) Liver glutathione and cytochrome P-450 activity in experimental infection: study of the relative effects of infectious stress and malnutrition. Critical Care Medicine 19, 11831187.Google Scholar
Long, C. L. (1988) Monokine metabolism in the septic syndrome. Journal of Parenteral and Enteral Nutrition 12, 785815.CrossRefGoogle ScholarPubMed
Lorenz, J., Glatt, H. R., Fleischmann, R., Ferlinz, R. & Oesch, F. (1984) Drug metabolism in man and its relationship to that in three rodent species: monoxygenase, epoxide hydrolase, and glutathione S-transferase activities in subcellular fractions of lung and liver. Biochemical Medicine 32, 4356.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
McCarthy, D. O., Kluger, M. J. & Vander, A. J. (1985) Suppression of food intake during infection: is interleukin-1 involved? American Journal of Clinical Nutrition 42, 11791182.Google Scholar
Maruyama, E., Kojima, K., Higashi, T. & Sakamoto, Y. (1968) Effect of diet on liver glutathione and glutathione reductase. Journal of Biochemistry 63, 398399.Google ScholarPubMed
Mazel, P. (1971) Experiments illustrating drug metabolism in vitro. In Fundamentals of Drug Metabolism and Drug Disposition, pp. 546582 [La Du, B. N., Mandel, H. G., Way, E. L., editors]. Baltimore: Williams and Wilkins.Google Scholar
Mehta, S., Kalsi, H. K., Jayaraman, S. & Mathur, V. S. (1975) Chloramphenicol metabolism in children with protein calorie malnutrition. American Journal of Clinical Nutrition 28, 977981.Google Scholar
Meister, A. & Tate, S. (1976) Glutathione and related α-glutamyl compounds: biosynthesis and utilisation. Annual Review of Biochemistry 45, 559604.Google Scholar
Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gilette, J. R. & Brodie, B. B. (1973) Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. Journal of Pharmacology and Experimental Therapeutics 187, 211219.Google ScholarPubMed
Moldeus, P. & Quanguan, J. (1987) Importance of the glutathione cycle in drug metabolism. Pharmacology and Therapeutics 33, 3740.CrossRefGoogle ScholarPubMed
Omura, T. & Sato, R. (1964) The carbon monoxide binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. Journal of Biological Chemistry 239, 23702385.Google Scholar
Omura, T., Sato, R. & Cooper, D. Y. (1965) Function of cytochrome P-450 of microsomes. Federation Proceedings. Federation of American Societies for Experimental Biology 24, 11811189.Google Scholar
Pessayre, D., Dolder, A., Artigou, J. Y. & Wandsheer, J. C. (1979) Effect of fasting on metabolite-mediated hepatotoxicity in the rat. Gastroenterology 77, 264271.CrossRefGoogle ScholarPubMed
Petit, J., Fouin-Fortunet, H., Colomb, V., Hecketsweiler, B., Lemeldnd, J. F., Denis, P. & Colin, R. (1991) Liver Factors involved in drug metabolism in experimentally infected rats: deleterious effect of ornithine alpha-ketoisocaproate. Clinical Nutrition 10, 328335.CrossRefGoogle ScholarPubMed
Prescott, L. F., Park, J., Sutherland, G. R.., Smith, I. J. & Proudfoot, A. T. (1976) Cysteamine, methionine, and penicillamine in the treatment of paracetamol poisoning. Lancet ii, 109113.Google Scholar
Remmer, H. (1972) Induction of drug metabolising enzyme system in the liver. European Journal of Clinical Pharmacology 5, 116136.CrossRefGoogle Scholar
Renton, K. W. & Mannering, G. J. (1976) Depression of hepatic cytochrome P-450-dependent monooxygenase systems with administered interferon inducing agents. Biochemical and Biophysical Research Communications 73, 343348.CrossRefGoogle ScholarPubMed
Robinson, M. K., Rounds, J. D., Hong, R. W., Jacobs, D. O. & Wilmore, D. W. (1992) Glutathione deficiency increases organ dysfunction after hemorrhagic shock. Surgery 112, 140149.Google ScholarPubMed
Roh, M. S., Moldawer, L. L., Ekman, L. A, Dinarello, C. A, Bistrian, B. R., Jeevanandam, M. & Brennan, M. F. (1986) Stimulatory effect of interleukin-1 upon hepatic metabolism. Metabolism 35, 419424.Google Scholar
Roth, E., Muhlbacher, F., Karner, J. & Steininger, R. (1985) Liver amino acids in sepsis. Surgery 97, 436&442.Google Scholar
Schreiber, G., Howlett, G., Nagashima, M., Millership, A., Martin, H., Urban, J. & Kotler, L. (1982) The acute-phase response of plasma protein synthesis during experimental inflammation. Journal of Biological Chemistry 257, 1027110277.CrossRefGoogle ScholarPubMed
Sherlock, S. (1979) Hepatic reactions to drugs. Gut 20, 634648.Google Scholar
Tateishi, N., Higashi, T., Shinya, S., Naruse, A. & Sakamoto, Y. (1974) Studies on the regulation of glutathione level in rat liver. Journal of Biochemistry 75, 93103.Google Scholar
Vasko, M. R. & Brater, D. C. (1989) Drug interactions. In Essentials of Critical Care Pharmacology, pp. 126 [Chernow, B., editor]. Baltimore: Williams and Wilkins.Google Scholar
Wade, A. E., White, R. A, Walton, L. C. & Bellows, J. T. (1985) Dietary fat- a requirement for induction of mixed-function oxidase activities in starved-refed rats. Biochemical Pharmacology 34, 37473754.Google Scholar
Ward, M. W. N., Owens, C. W. I. & Rennie, M. J. (1980) Nitrogen estimation in biological samples by use of chemiluminescence. Clinical Chemistry 26, 13361339.Google Scholar
Warnet, J. M., Bakar-Wesseling, l. & Thevenin, M. (1987) Effects of subchronic low-protein diet on some tissue glutathione related enzyme activities in the rat. Archives of Toxicology Suppl. 11, 4549.Google Scholar
White, P. F., Way, W. L. & Trevor, A. J. (1982) Ketamine. Its pharmacology and therapeutic uses. Anesthesiology 56, 119136.Google Scholar
Yang, C. S., Brady, J. F. & Hong, J.-Y. (1992) Dietary effects on cytochromes P-450, xenobiotic metabolism, and toxicity. FASEB Journal 6, 737744.CrossRefGoogle ScholarPubMed