Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T00:00:35.442Z Has data issue: false hasContentIssue false

Mechanisms of heat damage in proteins

5. The nutritional values of heat-damaged and propionylated proteins as sources of lysine, methionine and tryptophan*

Published online by Cambridge University Press:  09 March 2007

Shirley A. Varnish
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
K. J. Carpenter
Affiliation:
Department of Applied Biology, University of Cambridge, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The preparation of a propionylated protein is described, and the effects of this treatment on amino acid composition and availability are compared with the effects of severe heat treatment (autoclaving) of a protein.

2. Using chemical analyses, changes exceeding 5% for total tyrosine, histidine, methionine and cystine contents were found after propionylation of the protein. Autoclaving of the protein resulted in changes in total serine, lysine, methionine, cystine and tryptophan contents.

3. Microbiological estimates of total amino acid contents were not in close agreement with the chemical estimates for the autoclaved protein.

4. Fluorodinitrobenzene-reactive lysine content was reduced to almost zero by propionylation, and by almost 40% by autoclaving.

5. Both propionylating and autoclaving protein reduced the amount of lysine available to the chick by about half. In contrast, the availabilities of methionine and tryptophan to the chick were unchanged by propionylation, but were reduced to 0.66 and 0.44 respectively, relative to the untreated protein, by autoclaving.

6. Because of the difficulties of obtaining reliable absolute estimates of amino acid availability using chick growth assays, our interpretation of results is mainly based on relative values. The merits of microbiological microbiological estimates of amino acid availability are assessed.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Anantharaman, K. & Carpenter, K. J. (1971). J. Sci. Fd Agric. 22, 412.CrossRefGoogle Scholar
Association of Official Agricultural Chemists (1965). Official Methods of Analysis, 10th ed. Washington, DC: Association of Official Agricultural Chemists.Google Scholar
Atkinson, J. & Carpenter, K. J. (1970). J. Sci. Fd Agric. 21, 366.CrossRefGoogle Scholar
Bjarnason, J. & Carpenter, K. J. (1969). Br. J. Nutr. 23, 859.CrossRefGoogle Scholar
Bjarnason, J. & Carpenter, K. J. (1970). Br. J. Nutr. 24, 313.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochem. J. 77, 604.CrossRefGoogle Scholar
Carpenter, K. J. & Booth, V. H. (1973). Nutr. Abstr. Rev. 43, 423.Google Scholar
Carpenter, K. J., McDonald, I. & Miller, W. S. (1972). Br. J. Nutr. 27, 7.CrossRefGoogle Scholar
Carpenter, K. J., March, B. E., Milner, C. K. & Campbell, R. C. (1963). Br. J. Nutr. 17, 309.CrossRefGoogle Scholar
Donoso, G., Lewis, O. A. M., Miller, D. S. & Payne, P. R. (1962). J. Sci. Fd Agric. 13, 192.CrossRefGoogle Scholar
Dvorak, Z. (1968). J. Sci. Fd Agric. 19, 71.CrossRefGoogle Scholar
Finney, D. J. (1964). Statistical Method in Biological Assay p. 193. London: Griffin.Google Scholar
Ford, J. E. (1962). Br. J. Nutr. 16, 409.CrossRefGoogle Scholar
Ford, J. E. & Salter, D. N. (1966). Br. J. Nutr. 20, 843.CrossRefGoogle Scholar
Fraenkel-Conrat, H., Bean, R. S. & Lineweaver, H. (1949). J. biol. Chem. 177, 385.CrossRefGoogle Scholar
Hartley, A. W. (1966). 4th Amino Acid Colloquium p. 19. Chertsey, Surrey: Technicon Instruments Co. Ltd.Google Scholar
Harwood, E. J. & Shrimpton, D. H. (1969). Proc. Nutr. Soc. 28, 66A.Google Scholar
Henry, K. M. & Ford, J. E. (1965). J. Sci. Fd Agric. 16, 425.CrossRefGoogle Scholar
Kennedy, T. S. (1965). J. Sci. Fd Agric. 16, 433.CrossRefGoogle Scholar
Leclerc, J. & Benoiton, L. (1968). Can. J. Biochem. Physiol. 46, 471.Google Scholar
Ma, T. S. & Zuazaga, G. (1942). Ind. Engng Chem. analyt. Edn 14, 280.CrossRefGoogle Scholar
Mason, V. C. & Weidner, K. (1964). Acta Agric. scand. 14, 113.CrossRefGoogle Scholar
Mauron, J. (1972). In International Encyclopaedia of Food and Nutrition Voi. II, Protein and Amino Acid Functions, p. 417 [Bigwood, E. J, editor]Oxford: Pergamon.Google Scholar
Mecham, D. K. & Olcott, H. S. (1947). Ind. Engng Chem. ind. (int.) Edn 39, 1023.CrossRefGoogle Scholar
Miller, E. L. (1967). J. Sci. Fd Agric. 18, 381.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J. & Milner, C. K. (1965). Br. J. Nutr. 19, 547.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J., Morgan, C. B. & Boyne, A. W. (1965). Br. J. Nutr. 19, 249.CrossRefGoogle Scholar
Otterburn, M. S. & Sinclair, W. J. (1973). J. Sci. Fd Agric. 24, 929.CrossRefGoogle Scholar
Rolls, B. A., Williams, A. P. & Porter, J. W. G. (1969). Proc. Nutr. Soc. 28, 69A.Google Scholar
Technicon Instruments Corporation (1963). Technical Manual AA-I. Tarry Town, New York: Technicon Instruments Corporation.Google Scholar
Thomas, D. C. (1965). 3rd Amino Acid Colloquium p. 110. Chertsey, Surrey: Technicon Instruments Co. Ltd.Google Scholar
Varnish, S. A. (1971). Nutritional studies on heat-damaged protein. PhD Thesis, University of Cambridge.Google Scholar
Varnish, S. A. & Carpenter, K. J. (1970). Proc. Nutr. Soc. 29, 45A.Google Scholar
Varnish, S. A. & Carpenter, K. J. (1975). Br. J. Nutr. 34, 339.CrossRefGoogle Scholar
Weidner, K. & Eggum, B. O. (1966). Acta Agric. scand. 16, 115.CrossRefGoogle Scholar