Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T07:46:19.743Z Has data issue: false hasContentIssue false

Metabolic balance of zinc, copper, cadmium, iron, molybdenum and selenium in young New Zealand women

Published online by Cambridge University Press:  09 March 2007

Marion F. Robinson
Affiliation:
Department of Nutrition, Univeresity of Otago School of Home Science, Dunedin, New Zealand
Joan M. McKenzie
Affiliation:
Department of Nutrition, Univeresity of Otago School of Home Science, Dunedin, New Zealand
Christine D. Thompson
Affiliation:
Department of Nutrition, Univeresity of Otago School of Home Science, Dunedin, New Zealand
Anita L. Van Rij
Affiliation:
Department of Nutrition, Univeresity of Otago School of Home Science, Dunedin, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Metabolic balance studies of zinc, copper, cadmium, iron, molybdenum and selenium were made on four young New Zealand women, using brilliant blue and chromic oxide as faecal markers.

2. Zn, Cu, Cd and Fe concentrations in foods, faeces and urine were measured by atomic absorption spectrophotometry, whereas Mo was determined spectrophotometrically with dithiol and Se fluorimetrically with diaminonaphthalene.

3. The dietary intakes of Zn, Cu and Fe were similar to those reported in the USA and the UK, whereas those of Cd, Mo and Se were less. The subjects ate a diet consisting of foods normally consumed by New Zealand women.

4. For each subject there was little variation in the urinary output of each element for three 6 d periods. Day-to-day variation was small for each subject. The individual variation in urinary output of each element among the subjects was smaller when expressed as a ratio of intake, except for Mo.

Retentions were small for Zn, Cu and Fe, all elements which are poorly absorbed. Balances of Se, Mo and possibly Cd were in equilibrium.

Type
Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

Consolazio, C. F., Nelson, R. A., Matousch, L. O., Hughes, R. C. & Urone, P. (1964). U.S. Army med. Res. Nutr. Lab. Rep. no. 284, p. 1Google Scholar
Department of Health and Social Security (1969). Rep. Publ Hlth med. Subj Lond, no, 120.Google Scholar
Grant, A. B. & Wilson, G. F. (1968). N. Z. Jl agric. Res. 11, 733.CrossRefGoogle Scholar
Healy, W. B. (1964). N. Z. Soil Bur. Rep. 3, 1964.Google Scholar
Hegsted, D. M. (1967). J. Am. diet Ass. 50, 105.CrossRefGoogle Scholar
Helwig, H. L., Hoffer, E. M., Thilen, W. C.Alcocer, A. E., Hotelling, D. R., Rogers, W. H. & Lench, J. (1966). Am. J. clin. Path. 45, 156.CrossRefGoogle Scholar
Holmes, S. A., Swindells, Y. E., Sharpe, S. J., Wright, J. N. & Robinson, M. F. (1969). J. Am. diet. Ass. 54, 39.CrossRefGoogle Scholar
Hunscher, H. A. (1961). J. Am. diet. Ass. 39, 209.CrossRefGoogle Scholar
Isaksson, B. & Sjögren, B. (1967). Proc. Nutr. Soc. 26, 106.CrossRefGoogle Scholar
Lewis, G. P., Jusko, W. J., Coughlin, L. L. & Hartz, S. (1972). Lancet i, 291.CrossRefGoogle Scholar
Lutwak, L. & Burton, B. T. (1964). Am. J. clin. Nutr. 14, 109.CrossRefGoogle Scholar
McCance, R. A., Rutishauser, I. H. E. & Boozer, C. N. (1970). Archs Dis. Childh. 45, 410.CrossRefGoogle Scholar
Macdonald, G. M. (1963). N.Z. med. J. 62, 620.Google Scholar
McKenzie, J. M. (1972 a). Proc. Univ. Otago med. Sch. 50, 15.Google Scholar
McKenzie, J. M. (1972 b). Proc. Univ. Otago med. Sch. 50, 16.Google Scholar
McLeod, B. E. & Robinson, M. F. (1972). Hr. J. Nutr. 27, 221.CrossRefGoogle Scholar
Meret, S. & Henkin, R. I. (1971). Clin. Chem. 17, 369.CrossRefGoogle Scholar
Nandi, M., Jick, H., Slone, D., Jusko, W. J., Shapiro, S. & Lewis, G. P. (1969). Lancet ii, 1329.CrossRefGoogle Scholar
National Research Council: Food and Nutrition Board (1968). Publs natn. Res. Coun., Wash. no. 1694.Google Scholar
National Health and Medical Research Council of Australia (1970). In Tables of Composition of Australian Foods. Appendix I [Thomas, S. & Corden, M., compilers]. Canberra: Australian Government Publishing Service.Google Scholar
Robins, C. D. (1969). The excretion of selenium in the urine of some women in New Zealand. MHSc Thesis, University of Otago.Google Scholar
Schroeder, H. A., Balassa, J. J. & Tipton, I. H. (1970). J. chron. Dis. 23, 481.CrossRefGoogle Scholar
Schroeder, H. A. & Nason, A. P. (1971). Clin. Chem. 17, 461.CrossRefGoogle Scholar
Schroeder, H. A., Nason, A. P., Tipton, I. H. & Balassa, J. J. (1966). J. chron. Dis. 19, 1007.CrossRefGoogle Scholar
Schroeder, H. A., Nason, A. P., Tipton, I. H. & Ralassa, J. J. (1967). J. chron. Dis. 20, 179.CrossRefGoogle Scholar
Schwarz, K. (1961). Fedn Proc. Fedn Am. Socs exp. Biol. 20, 666.Google Scholar
Sharpe, S. J. & Robinson, M. F. (1970). Br. J. Nutr. 24, 489.CrossRefGoogle Scholar
Swindells, Y. E., Holmes, S. A. & Robinson, M. F. (1968). Br. J. Nutr. 22, 667.CrossRefGoogle Scholar
Thomson, C. D. (1972). Proc. Univ. Otago med. Sch. 50, 31.Google Scholar
Tipton, I. H., Stewart, P. L. & Martin, P. G. (1966). Hlth Phys. 12, 1683.CrossRefGoogle Scholar
Tipton, I. H., Stewart, P. L. & Dickson, J. (1969). Hlth Phys. 16, 455.CrossRefGoogle Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition 3rd ed. New York: Academic Press.Google Scholar
Walker, A. R. P. (1962). Am. J. clin. Nutr. 10, 95.CrossRefGoogle Scholar
Walshe, J. M. (1968). Proc. Nutr. Soc. 27, 107.CrossRefGoogle Scholar
Watkinson, J. H. (1966). Analyt. Chem. 38, 92.CrossRefGoogle Scholar