Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T14:25:40.190Z Has data issue: false hasContentIssue false

The origin of urinary aromatic compounds excreted by ruminants 2. The metabolism of phenolic cinnamic acids to benzoic acid

Published online by Cambridge University Press:  04 June 2009

A. K. Martin
Affiliation:
Hannah Research Institute, Ayr, Scotland KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The extent to which phenolic derivatives of benzoic acid (seven); of phenylacetic acid (one); of 3-phenylpropionic acid (one) and of cinnamic acid (six) served as precursors of the urinary benzoic acid excreted by sheep was determined after administration as continuous drips via rumen or abomasal cannulas.

2. Phenolic derivatives of benzoic or of phenylacetic acid were not dehydroxylated to yield aromatic acids following administration via either route.

3. Rumen infusion of phenolic derivatives of both 3-phenylpropionic and cinnamic acids gave enhanced rumen concentrations of 3-phenylpropionic acid with negligible amounts of benzoic acid. Between 63 and 106% of the 2-, 3- or 4-hydroxy acids, of the 3,4-dihydroxy acids or of the 3-methoxy, 4-hydroxy acids infused were excreted in the urine as benzoic acid and a variable proportion, characteristic of the individual animal, of up to 20% of the dose as cinnamic acid.

4. Abomasal infusion of monohydroxy 3-phenylpropionic and cinnamic acids did not yield urinary benzoic acid increments. However, between 11 and 34% of abomasally-infused disubstituted phenolic cinnamic acids infused were excreted in the urine as benzoic acid due, it is postulated, to entero-hepatic circulation and microbial metabolism of the infused acids in the large intestine.

5. It is concluded that rumen microbial metabolism of dietary phenolic cinnamic acids to 3-phenylpropionic acid followed by its absorption and oxidation in the body tissues is responsible for the greater part of the benzoic and cinnamic acids found in ruminant urine.

Type
Paper on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Akeson, W. R., Gorz, H. J. & Haskins, F. A. (1963). Crop Sci. 3, 167.CrossRefGoogle Scholar
Ashton, W. M. & Jones, E. (1959). J. Br. Grassld Soc. 14, 47.CrossRefGoogle Scholar
Booth, A. N. & Williams, R. T. (1963). Nature, Lond. 198, 684.CrossRefGoogle Scholar
Brewington, C. R., Parks, O. W. & Schwartz, D. D. (1974). J. agric. Fd Chem. 22, 293.CrossRefGoogle Scholar
Cmelik, S. H. W. & Mathews, R. J. (1965). Rhodesia, Malawi & Zambia J. agric. Res. 3, 95.Google Scholar
Curtius, H. Ch., Mettler, M. & Ettlinger, L. (1976). J. Chromat. 126, 569.Google Scholar
Dacre, J. C. & Williams, R. T. (1968). J. Pharm. Pharmac. 20, 610.CrossRefGoogle Scholar
Davies, A. M. C., Newby, V. K. & Synge, R. L. M. (1978). J. Sci. Fd Agric. 29, 33.CrossRefGoogle Scholar
Durkee, A. B. & Thivierge, P. A. (1977). J. Fd Res. 42, 551.Google Scholar
El-Basyouni, S. Z. & Towers, G. H. N. (1964). Can. J. Biochem. 42, 203.Google Scholar
Finkle, B. J., Lewis, J. C., Corse, J. W. & Lundin, R. E. (1962). J. biol. Chem. 237, 2926.CrossRefGoogle Scholar
Gordon, A. J. & Neudoerffer, T. S. (1973). J. Sci. Fd Agric. 24, 565.CrossRefGoogle Scholar
Gorz, H. J. & Haskins, F. A. (1964). Crop Sci. 4, 193.CrossRefGoogle Scholar
Guenzi, W. D. & McCalla, T. M. (1966). Agronomy J. 58, 303.Google Scholar
Harborne, J. B. (1964). In Biochemistry of Phenolic Compounds, p. 149 [Harborne, J. B., editor]. London: Academic Press.Google Scholar
Harborne, J. B. & Simmonds, N. W. (1964). In Biochemistry of Phenolic Compounds. p. 83 [Harborne, J. B., editor]. London: Academic Press.Google Scholar
Hartley, R. D. (1972). J. Sci. Fd Agric. 23, 1347.CrossRefGoogle Scholar
Hartley, R. D. & Jones, E. C. (1977). Phytochemistry 16, 1531.CrossRefGoogle Scholar
Hartley, R. D. & Jones, E. C. (1978). J. Sci. Fd Agric. 29, 777.CrossRefGoogle Scholar
Haskins, F. A. & Gorz, H. J. (1961). Crop Sci. 1, 320.CrossRefGoogle Scholar
Kuwatsuka, A. & Shindo, H. (1973). Soil Sci. Plant Nutr. 19, 219.CrossRefGoogle Scholar
Martin, A. K. (1969). Br. J. Nutr. 23, 389.CrossRefGoogle Scholar
Martin, A. K. (1970). J. Sci. Fd Agric. 21, 496.CrossRefGoogle Scholar
Martin, A. K. (1973). Br. J. Nutr. 30, 251.Google Scholar
Martin, A. K. (1982). Br. J. Nutr. 47, 139.CrossRefGoogle Scholar
Meyer, T. S. & Scheline, R. R. (1972). Xenobiotica 2, 391.Google Scholar
Millburn, P. (1970). In Metabolic Conjugation and Metabolic Hydrolysis, vol. 2, pp. 28 and 59 [Fishman, W. H., editor]. London: Academic Press.Google Scholar
Moores, R. G., McDermott, D. L. & Wood, L. R. (1948). Analyt. Chem. 20, 620.Google Scholar
Newby, V. K., Sablon, R.-M., Synge, R. L. M., Casteele, K. V. & Van Sumere, C. F. (1980). Phytochemistry 19, 651.CrossRefGoogle Scholar
Parks, O. W. & Allen, C. (1961). J. Dairy Sci. 56, 328.CrossRefGoogle Scholar
Patton, S. (1953). J. Dairy Sci. 36, 943.CrossRefGoogle Scholar
Patton, S. & Kesler, E. M. (1967). J. Dairy Sci. 50, 1505.CrossRefGoogle Scholar
Peppercorn, M. A. & Goldman, P. (1971). J. Bact. 108, 996.CrossRefGoogle Scholar
Ranganathan, S. & Ramasarma, T. (1974). Biochem. J. 140, 517.CrossRefGoogle Scholar
Salomonsson, A.-C., Theander, O. & Åman, P. (1978). J. agric. Fd Chem. 26, 830.Google Scholar
Scheline, R. R. (1968). Acta pharmac. tox. 26, 189.CrossRefGoogle Scholar
Scheline, R. R. (1973). Pharmac. Rev. 25, 466.Google Scholar
Scheline, R. R. (1978). Mammalian Metabolism of Plant Xenobiotics, pp. 170228. London: Academic Press.Google Scholar
Scott, T. W., Ward, P. F. V. & Dawson, R. M. C. (1964). Biochem. J. 90, 12.CrossRefGoogle Scholar
Wilde, P. F. & Dawson, R. M. C. (1966). Biochem. J. 98, 469.CrossRefGoogle Scholar