Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T14:03:00.550Z Has data issue: false hasContentIssue false

Quantitative intestinal digestion of nitrogen in sheep given formaldehyde-treated and untreated casein supplements

Published online by Cambridge University Press:  24 July 2007

J. C. Macrae
Affiliation:
Applied Biochemistry Division, DSIR, Palmerston North, New Zealand
M. J. Ulyatt
Affiliation:
Applied Biochemistry Division, DSIR, Palmerston North, New Zealand
P. D. Pearce
Affiliation:
Applied Biochemistry Division, DSIR, Palmerston North, New Zealand
Jane Hendtlass
Affiliation:
Applied Biochemistry Division, DSIR, Palmerston North, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In two experiments, sheep prepared with a rumen cannula and with re-entrant cannulas in the duodenum and ileum were continuously fed on diets of dried grass, dried grass plus formalin-treated casein, or dried grass plus untreated casein. Paper impregnated with chromic oxide was given once daily via the rumen fistula.

2. In ten 24 h collections of digesta entering the duodenum and eleven 24 h collections of digesta reaching the ileum of sheep given dried grass, there were highly significant correlations between the 24 h flows of Cr marker and the corresponding flows of dry matter, organic matter, nitrogen, gross energy, hemicellulose and cellulose (P < 0.01) at both sites.

3. Daily amounts of non-ammonia N and of individual amino acids entering and leaving the small intestine and of total N excreted in faeces and urine are given.

4. Net retention of supplementary N was 36% when the supplement was administered as formalin-treated casein, but only 17% when it was administered as untreated casein.

5. Formalin treatment of casein significantly increased the daily amounts of non-ammonia N entering the small intestine (P < 0.01) and the amounts of non-ammonia N apparently absorbed therein (P < 0.05).

6. Apparent absorption of amino acids from the small intestine was significantly greater (P < 0.05) with treated casein than with untreated casein. There were relative increases in the small amounts of several free amino acids measured, including taurine, in the ileal digesta of sheep receiving the treated casein supplement.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Bailey, R. W. (1964). N.Z.Flagric. Res. 7, 496.Google Scholar
Blaxter, K. L. & Martin, A. K. (1962). Br. J. Nutr. 16, 397.CrossRefGoogle Scholar
Brown, G. F., Armstrong, D. G. & MacRae, J. C. (1968). Br. vet. J. 124, 78.CrossRefGoogle Scholar
Bruce, J., Goodall, E. D., Kay, R. N. B., Phillipson, A. T. & Vowles, L. E. (1966). Proc. R. Soc. 166, 4.Google Scholar
Campbell, R. M., Cuthbertson, D. P., Mackie, W., McFarlane, A. S., Phillipson, A. T. & Sudsanch, S. (1961). J. Physiol., Lond. 258, 113.CrossRefGoogle Scholar
Chalmers, M. I., Cuthbertson, D. P. & Synge, R. L. M. (1954).J. agric. Sci., Camb. 44, 254.CrossRefGoogle Scholar
Clarke, E. M. W., Ellinger, G. M. & Phillipson, A. T. (1966). Proc. R. Soc. B. 166, 63.Google Scholar
Conway, E. J. (1957). Micro-dzffusion Analysis and Volumetric Error 4th ed. London: Lockwood.Google Scholar
Corbett, J. L., Greenhalgh, J. F. D., McDonald, I. & Florence, E. (1960). Br. J. Nutr. 14, 289.CrossRefGoogle Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Goodall, E. D. & Kay, R. N. B. (1965). J. Physiol., Lond. 176, 12.CrossRefGoogle Scholar
Gruber, H. A. & Mellon, E. F. (1968). Analyt. Biochem. 26, 180.CrossRefGoogle Scholar
Harris, L. E. & Phillipson, A. T. (1962). Anim. Prod. 4, 97.Google Scholar
Hogan, J. P. & Weston, K. H. (1967). Aust J. agric. Res. 18, 803.CrossRefGoogle Scholar
Kay, R. N. B. (1969). Proc. Nutr. Soc. 28, 140.CrossRefGoogle Scholar
MacRae, J. C. (1970). Proc. N.Z. Soc. Anim. Prod. 30, 218.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969 a). Br. J. Nutr. 23, 15.CrossRefGoogle Scholar
MacRae, J. C. & Armstrong, D. G. (1969 b). Br. J. Nutr. 23, 377.CrossRefGoogle Scholar
Munro, H. N. (1966). In Postgraduate Gastroenterology (Proc. Conf. 1965) p. 58 [Thomson, T. J. and Gillespie, I. E. editors]. London: Baillikre, Tindall & Cassell.Google Scholar
Nicholson, J. W. G. & Sutton, J. D. (1969). Br. J. Nutr. 23, 585.CrossRefGoogle Scholar
Peterson, P. J., Hendtlass, J., MacRae, J. C. & Pearce, P. D. (1971). J. Sci. Fd Agric. 22 (in the Press).CrossRefGoogle Scholar
Porter, J. W. G., Westgarth, D. R. & Williams, A. P. (1968). Br. J. Nutr. 22, 437.CrossRefGoogle Scholar
Reis, P. J. (1969). Aust. J. biol. Sci. 22, 745.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1961). Aust. J. agric. Res. 12, 335.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1963). Aust.J. biol. Sci. 16, 218.CrossRefGoogle Scholar
Reis, P. J. & Schinckel, P. G. (1964). Aust.J. biol. Sci. 17, 532.CrossRefGoogle Scholar
Reis, P. J. & Tunks, D. A. (1969). Aust. J. agric. Res. 20, 773.CrossRefGoogle Scholar
Rose, W. C. (1938). Physiol. Rev. 18, 109.CrossRefGoogle Scholar
Sutherland, T. M., Gupta, B. N., Reid, R. S. & Murray, M. G. (1964). Proc. int. Congr. Nutr. VI. Edinburgh, 1963, p. 579.Google Scholar
Texter, E. C. Jr., Chou, C.-C., Laureta, H. C. & Vantrappen, G. R. (1968). Physiology of the Gnstro-intestinal Tract Ch. 25. St Louis Mo.: C. V. Mosby.Google Scholar
Thomson, D. J., Beever, D. E., Coehlo da Silva, J. F.. & Armstrong, D. G. (1969). Proc. Nutr. Soc. 28, 24..Google Scholar
Topps, J. H., Kay, R. N. B. & Goodall, E. D. (1968). Br. J. Nutr. 22, 261.CrossRefGoogle Scholar
Ulyatt, M. J. (1967). Proc. N.Z. Soc. Anim. Prod. 27, 181.Google Scholar
van&apos;t Klooster, A. Th., Rogers, P. A. M. & Sharma, H. R. (1969). Neth. J. agric. Sci. 17, 60.Google Scholar
Williams, C. H., David, D. J. & Iismaa, O. (1962). J. agric. Sci., Camb. 59, 381.CrossRefGoogle Scholar