Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T08:13:51.593Z Has data issue: false hasContentIssue false

Role of rumen protozoa in nitrogen digestion in sheep given two isonitrogenous diets

Published online by Cambridge University Press:  09 March 2007

K. Ushida
Affiliation:
Laboratoire de la Digestion des Ruminants, INRA, Centre de Recherches de Clermont, Theix, 63122 Ceyrat, France
J. P. Jouany
Affiliation:
Laboratoire de la Digestion des Ruminants, INRA, Centre de Recherches de Clermont, Theix, 63122 Ceyrat, France
P. Thivend
Affiliation:
Laboratoire de la Digestion des Ruminants, INRA, Centre de Recherches de Clermont, Theix, 63122 Ceyrat, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of protozoa on digestion in the rumen was studied using either defaunated or faunated sheep.

2. Six wethers, each fitted with rumen and simple duodenal cannulas, were given two isonitrogenous diets containing either lucerne (Medicago sativa) hay (diet L) or sodium hydroxide-treated wheat straw (diet S). The diets were given in eight equal portions per day at 3-h intervals. The mean intake of dry matter, 53 g/kg body-weight0.75 per d, was similar for the two diets and each diet had a similar digestible organic matter content. Diet L promoted a large protozoal population and was rich in nitrogen sources of low rumen-degradability, while diet S supported a smaller protozoal population and was rich in rumen-degradable N.

3. Digesta flow at the duodenum was estimated by means of a dual-marker technique using chromium-mordanted lucerne hay and polyethylene glycol as markers. The microbial flow at the duodenum was estimated using diaminopimelic acid (DAPA), nucleic-acid purine bases (PB) and 35S incorporation simultaneously. The different microbial markers were compared in the defaunated sheep. Protozoal N contribution was estimated in faunated sheep.

4. Defaunated sheep had lower rumen ammonia concentrations and molar proportions of butyric acid than faunated sheep, but they had higher molar proportions of propionic acid.

5. Rumen organic matter digestion was reduced by defaunation, but this decrease was compensated for by increased intestinal digestion.

6. There was a net increase of N flow (approximately 10 g/d) between mouth and duodenum in defaunated sheep. This was explained by increases in both microbial and dietary N flows from the rumen compared with faunated sheep.

7. The influence of protozoa on solid- and liquid-phase retention times in the rumen is discussed, as well as the protozoal contribution to microbial N flow in the duodenum of faunated sheep.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Abe, M., Iriki, T., Tobe, N. & Shibui, H. (1981). Applied and Environmental Microbiology 41, 758765.CrossRefGoogle Scholar
Abou Akkada, A. R. & Howard, B. H. (1962). Biochemical Journal 82, 313320.CrossRefGoogle Scholar
Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock, p. 127. Farnham Royal, Slough: Commonwealth Agricultural Bureaux.Google Scholar
Bauchop, T. & Clarke, R. T. J. (1976). Applied and Environmental Microbiology 32, 417422.CrossRefGoogle Scholar
Bird, S. H., Hill, H. K. & Leng, R. A. (1979). British Journal of Nutrition 42, 8187.CrossRefGoogle Scholar
Bird, S. H. & Leng, R. A. (1978). British Journal of Nutrition 40, 163167.CrossRefGoogle Scholar
Bryant, M. P. & Small, N. (1960). Journal of Dairy Science 43, 654667.CrossRefGoogle Scholar
Coleman, G. S. (1975). In Digestion and Metabolism in the Ruminant, pp. 149164. [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW, Australia: University of New England Publishing Unit.Google Scholar
Coleman, G. S. (1981). Advances in Parasitology 18, 121163.CrossRefGoogle Scholar
Coleman, G. S. & Hall, F. J. (1969). Tissue and Cell 1, 607618.CrossRefGoogle Scholar
Collombier, J. (1981). Contribution à I'étude du r⊚le des protozoaires ciliés du rumen dans I'apport d'azote microbien entrant dans le duodenum du ruminant. Thèse de doctorat, Université de Clermont II.Google Scholar
Dehority, B. A. & Mattos, W. (1978). Applied and Environmental Microbiology 36, 953958.CrossRefGoogle Scholar
Demeyer, D. I. (1981). Agricultural Environment 6, 295337.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, C. J. (1979). British Journal of Nutrition 42, 515524.CrossRefGoogle Scholar
Dennis, S. M., Arambel, M. J., Bartley, E. E. & Dayton, A. D. (1983). Journal of Dairy Science 66, 12481258.CrossRefGoogle Scholar
Eadie, J. M., Hyldgaard-Jensen, J., Mann, S. O., Reid, R. S. & Whitelaw, F. G. (1970). British Journal of Nutrition 24, 157177.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 261276 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW, Australia: University of New England Publishing Unit.Google Scholar
Faichney, G. J. & Griffiths, D. A. (1978). British Journal of Nutrition 40, 7182.CrossRefGoogle Scholar
Ganev, G., & Ørskov, E. R. & Smart, R. (1979). Journal of Agricultural Science, Cambridge 93, 651656.CrossRefGoogle Scholar
Gill, J. L. (1978). Design and Analysis of Experiments in the Animal and Medical Sciences, vol. 1, pp. 239248. Ames, Iowa: Iowa State University Press.Google Scholar
Harrison, D. G., Beever, D. E. & Osbourn, D. F. (1979). British Journal of Nutrition 41, 521527.CrossRefGoogle Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1975). Journal of Agricultural Science, Cambridge 85, 93101.CrossRefGoogle Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1976). Journal of the Science of Food and Agriculture 27, 617620.CrossRefGoogle Scholar
Harrison, D. G. & McAllan, A. B. (1980). In Digestive Physiology and Metabolism in Ruminants, pp. 205226 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and Its Microbes, pp. 137139. New York: Academic Press.Google Scholar
Institut National de la Recherche Agronomique (1978). Alimentation des Ruminants, p. 97. Versailles, France: INRA Publications.Google Scholar
John, A. & Ulyatt, M. J. (1984). Journal of Agricultural Science, Cambridge 102, 3344.CrossRefGoogle Scholar
Jouany, J. P. (1978). Contribution à I'étude des protozoaires ciliés du rumen: leur dynamique, leur rôle dans la digestion et leur interêt pour le ruminant. Thèse de docteur ès sciences, Université de Clermont II.Google Scholar
Jouany, J. P. (1982). Sciences des Aliments 2, 131141.Google Scholar
Jouany, J. P. & Senaud, J. (1979 a). Annales de Biologie Animale, Biochimie, Biophysique 19, 619624.CrossRefGoogle Scholar
Jouany, J. P. & Senaud, J. (1979 b). Annales de Recherches Vétérinaires 10, 261263.Google Scholar
Jouany, J. P. & Thivend, P. (1972). Annales de Biologie Animale, Biochimie, Biophysique 12, 679683.CrossRefGoogle Scholar
Jouany, J. P., Zainab, B., Senaud, J., Groliere, C. A., Grain, J. & Thivend, P. (1981). Reproduction, Nutrition et Développement 21, 874884.Google Scholar
Kayouli, C., Demeyer, D. I., Van Nevel, C. J. & Dendooven, R. (1984). Animal Feed Science and Technology 10, 165172.Google Scholar
Kayouli, C., Van Nevel, C. J. & Demeyer, D. I. (1983). In Métabolisme et Nutrition Azotés vol. 2, Les colloques de I'INRA no. 16, pp. 251253 [Arnal, M. and Bonin, D., editors]. Versailles, France: INRA Publications.Google Scholar
Kennedy, P. M. & Milligan, L. P. (1978). British Journal of Nutrition 39, 105117.Google Scholar
Kurihara, Y., Takechi, T. & Shibata, F. (1978). Journal of Agricultural Science, Cambridge 90, 373381.CrossRefGoogle Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Australian Journal of Agricultural Research 23, 321330.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1978). British Journal of Nutrition 39, 165175.Google Scholar
Malawer, S. J. & Powel, D. W. (1967). Gastroenterology 53, 250256.CrossRefGoogle Scholar
Mangan, J. L. & Pryor, M. J. (1969). Journal of Physiology 200, 18p19p.Google Scholar
Mathers, J. C. & Miller, E. L. (1980). British Journal of Nutrition 43, 503514.CrossRefGoogle Scholar
Mathieson, J. (1970). Proceedings of the Nutrition Society 29, 30A.Google Scholar
Mercer, J. R., Allen, S. A. & Miller, E. L. (1980). British Journal of Nutrition 43, 421433.Google Scholar
Nakamura, K. & Kanegasaki, S. (1969). Journal of Dairy Science 52, 250255.CrossRefGoogle Scholar
Orpin, G. C. (1979 a). Society of General Microbiology Quarterly 7, 3132.Google Scholar
Orpin, G. C. (1979 b). Society of General Microbiology Quarterly 7, 32.Google Scholar
Orpin, G. C. & Letcher, A. J. (1984). Animal Feed Science and Technology 10, 145153.Google Scholar
Ørskov, E. R., Hughes-Jones, M. & McDonald, I. (1980). In Recent Advances in Animal Nutrition - 1980, pp. 8598 [Haresign, W., editor]. London: Butterworths.Google Scholar
Siddons, R. C., Beever, D. E. & Nolan, J. V. (1982). British Journal of Nutrition 48, 377389.CrossRefGoogle Scholar
Siddons, R. C., Beever, D. E., Nolan, J. V., McAllan, A. B. & MacRae, J. C. (1979). Annales de Recherches Vétérinaires 10, 286287.Google Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). Journal of Agricultural Science, Cambridge 90, 557568.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1971). Méthodes Statistiques, 6th ed., pp. 287333 [Boelle, H. & Camhaji, E., editors]. Paris: Association de Coordination de Technique Agricole.Google Scholar
Sutton, J. D., Knight, R., McAllan, A. B. & Smith, R. H. (1983). British Journal of Nutrition 49, 419432.Google Scholar
Tamminga, S., van der Koelen, C. J. & Van Vuuren, A. M. (1979). Livestock Production Science 6, 255262.CrossRefGoogle Scholar
Uden, P., Colucci, P. E. & Van Soest, P. J. (1980). Journal of the Science of Food and Agriculture 31, 625632.CrossRefGoogle Scholar
Ushida, K. & Jouany, J. P. (1985). Reproduction, Nutrition et Développement 25, 10751081.Google Scholar
Ushida, K., Jouany, J. P., Lassalas, B. & Thivend, P. (1984). Canadian Journal of Animal Science 64, Suppl.2021.CrossRefGoogle Scholar
Ushida, K., Lassalas, B. & Jouany, J. P. (1985). Reproduction, Nutrition et Développment 25, 10371046.CrossRefGoogle Scholar
Veira, D. M., Ivan, M. & Jui, P. Y. (1984). Canadian Journal of Animal Science 64, Suppl.2223.CrossRefGoogle Scholar
Warner, A. C. I. (1956). Journal of General Microbiology 14, 749762.CrossRefGoogle Scholar
Weatherburn, M. W. (1967). Analytical Chemistry 39, 971974.Google Scholar
Weller, R. A. & Pilgrim, A. F. (1974). British Journal of Nutrition 32, 341351.Google Scholar
West, J. & Mangan, J. L. (1972). Proceedings of the Nutrition Society 31, 108A109A.Google Scholar
Weston, R. H. & Hogan, J. P. (1967). Australian Journal of Biological Science 20, 967973.Google Scholar
Williams, P. D., Davis, R. E., Doetsh, R. N. & Gutierrez, J. (1961). Applied Micobiology 9, 405409.Google Scholar