Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T01:07:41.409Z Has data issue: false hasContentIssue false

Some effects of variation in carbohydrate and nitrogen intakes on the chemical composition of mixed rumen bacteria from young steers

Published online by Cambridge University Press:  06 August 2007

A. B. McAllan
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Samples of rumen digesta were taken at different times after giving calves various dried forage or hay and cereal diets and mixed bacteria were separated.

2. For calves receiving dried forage only, the carbohydrate content of mixed bacteria varied with time after feeding, reaching a maximum of approximately 140 g/kg dry matter (DM) after 0.5-1 h, decreasing to about 60 g/kg DM after 4 h.

3. Replacement of part of the dried forage with glucose to give a similar metabolizable energy intake but approximately half as much nitrogen, produced a similar pattern of change with time after feeding but resulted in a markedly increased maximum bacterial carbohydrate content (approximately 230 g/kg DM). Addition of urea to this diet reduced the bacterial accumulation of carbohydrate to approximately the same level as was found in samples from calves receiving forage only diets. For the forage diets the carbohydrate content fell to 60-100 g/kg DM 4 h after feeding. For the hay and cereal diet the value was 170 g/kg DM at this time.

4. Changes in bacterial carbohydrate content were largely a result of changes in storage polysaccharide (α-dextran) content.

5. Crude protein (N × 6.25) and ash contents of mixed bacteria decreased after feeding with all-forage diets, but returned to approximately fasting levels within 4 h. At this time samples from calves receiving dried forage and glucose diets contained less CP and more ash (approximately 450 and 220 g/kg DM respectively) than those from calves given diets of dried forage only (approximately 525 and 180 g/kg DM respectively).

6. CP, total carbohydrate and ash content of mixed rumen bacteria contributed approximately 0.80 g/g DM.

7. Sodium, potassium, calcium, magnesium and phosphate accounted for approximately 0.50 g/g bacterial ash.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Bird, P. R. (1973). Aust. J. Biol. Sci. 26, 1429.CrossRefGoogle Scholar
Bryant, M. P. (1973). Fedn Proc. Fedn Am. Socs exp. Biol. 32, 1809.Google Scholar
Cheng, K.-J., Hironaka, R., Roberts, D. W. A. & Costerton, J. W. (1973). Can. J. Microbiol. 19, 1501.CrossRefGoogle Scholar
Coleman, G. S. (1964). J. gen. Microbiol. 37, 209.CrossRefGoogle Scholar
Coleman, G. S. (1972). J. gen. Microbiol. 71, 117.CrossRefGoogle Scholar
Czerkawski, J. W. (1975). Proc. Nutr. Soc. 34, 62A.Google Scholar
Eadie, J. M. & Gill, J. C. (1971). Br. J. Nutr. 26, 155.CrossRefGoogle Scholar
Eadie, J. M. & Hobson, P. N. (1962). Nature, Lond. 193, 503.CrossRefGoogle Scholar
Fiske, C. H. & Subarrow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Henderickx, H. K., Demeyer, D. I. & Van Nevel, C. J. (1972). In Tracer Studies on Non-protein Nitrogen for Ruminants, p. 57. Vienna: I.E.A.E.Google Scholar
Herbert, D. (1961). Symp. Soc. gen. Microbiol. 11, 391.Google Scholar
Hobson, P. N. (1965). J. gen. Microbiol. 38, 167.CrossRefGoogle Scholar
Hoogenraad, N. J. & Hird, F. J. R. (1970). Br. J. Nutr. 24, 119.CrossRefGoogle Scholar
Jouany, J.-P. & Thivend, P. (1972). Ann. Biol. anim. Biochim. Biophys. 12, 673.CrossRefGoogle Scholar
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). J. gen Microbiol. 51, 267.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1974). Br. J. Nutr. 31, 77.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1976). J. Agric. Sci., Camb. 86, 639.CrossRefGoogle Scholar
Oldham, J. D., Swan, H. & Lewis, D. (1973). Proc. Nutr. Soc. 32, 89A.Google Scholar
Purser, D. B. (1970). Fedn Proc. Fedn Am. Socs exp. Biol. 29, 51.Google Scholar
Smith, R. H. (1962). Biochem. J. 83, 151.CrossRefGoogle Scholar
Smith, R. H. (1975). IV International Symposium on Ruminant Physiology, p. 110 [McDonald, I. W. editor]. Sydney, Australia.Google Scholar
Smith, R. H. & McAllan, A. B. (1966). Br. J. Nutr. 20, 703.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1970). Br. J. Nutr. 24, 545.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1971). In Automation in Analytical Chemistry (Technicon International Symposium, 1969), p. 207. Basingstoke, Hants: Technicon Instruments Company Ltd.Google Scholar
Smith, R. H. & McAllan, A. B. (1973). Proc. Nutr. Soc. 32, 9A.Google Scholar
Smith, R. H. & McAllan, A. B. (1974). Br. J. Nutr. 31, 27.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1970). Aust. J. agric. Res. 12, 651.CrossRefGoogle Scholar