Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T10:18:41.696Z Has data issue: false hasContentIssue false

Supplemental protein degradation, bacterial protein synthesis and nitrogen retention in sheep eating sodium hydroxide-treated straw

Published online by Cambridge University Press:  09 March 2007

K. Amaning-Kwarteng
Affiliation:
Department of Animal Husbandry, University of SydneyCamden, NSW 2570, Australia
R. C. Kellaway
Affiliation:
Department of Animal Husbandry, University of SydneyCamden, NSW 2570, Australia
A. C. Kirby
Affiliation:
Department of Genetics and Biometry, University of Sydney, Sydney, NSW 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Alkali (sodium hydroxide)-treated wheat straw was given to six rumen- and abomasal-cannulated sheep to study the rumen degradation of cotton-seed meal (CSM) and barley (B), and the effects of these supplements on nitrogen retention and efficiency of bacterial protein synthesis were measured.

2. N degradation, using porous synthetic (nylon) bags incubated within the rumen (P), and in vivo measurement determined from the abomasal flow of N (V), distinguished quantitatively between the two supplements. Estimates of P, corrected for fractional outflow rates/h (FOR), underestimated estimates of V when FOR of undegraded protein from the rumen (k) of 0.05 and 0.08 were used. Estimates of V for CSM and B were 70.9 and 80.8% respectively.

3. Intakes of alkali-treated straw were not affected by the supplements. Intakes of digestible organic matter (DOM) for the diets comprising alkali-treated straw alone (W), straw plus CSM (WC) and straw plus barley (WB) were 477, 575 and 590 g/d respectively (P < 0.05) and organic matter (OM) apparently digested in the rumen (OMADR) was 339, 399 and 435 g/d respectively (P < 0.05).

4. On W, WC and WB respectively, flows at the abomasum were 11.0, 14.0 and 13.3 g/d for bacterial N (P < 0.05) and 0,2.8 and 0.5 g/d for dietary supplemental N; g bacterial N/kg OMADR were 32.4, 35.6 and 30.9 (P > 0.05) and N balances were 2.37, 4.27 and 3.29 g/d (P < 0.05) on the respective treatments. It was suggested that supplements increased total OM intake as a result of increased OM digested in the rumen rather than OM flow from the rumen.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Farm Livestock no. 2, Ruminants. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Amaning-kwarteng, K., Kellaway, R. C. & Leibholz, J. (1984). Proceedings of the Australian Society of Animal Production 15, 649. Abstr.Google Scholar
Amaning-Kwarteng, K., Kellaway, R. C., Leibholz, J. & Kirby, A. C. (1986). British Journal of Nutrition 55, 387398.CrossRefGoogle Scholar
Burroughs, W., Nelson, D. K. & Mertens, D. R. (1975). Journal of Dairy Science 58, 611622.CrossRefGoogle Scholar
Campling, R. C. (1966). Journal of Dairy Research 33, 1323.CrossRefGoogle Scholar
Crabtree, J. R. & Williams, G. L. (1971). Animal Production 13, 7182.Google Scholar
Dufva, G. S., Bartley, E. E., Arambel, M. J., Nagaraja, T. G., Dennis, S. M., Galitzer, S. J. & Dayton, A. D. (1982). Journal of Dairy Science 65, 17541759.CrossRefGoogle Scholar
Egan, A. R., Walker, D. J., Nader, C. J. & Storer, G. (1975). Australian Journal of Agricultural Research 26, 909922.CrossRefGoogle Scholar
El-Shazly, K., Dehority, B. A. & Johnson, R. R. (1961). Journal of Animal Science 20, 268273.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, I. W. and Warner, A. C. I. editors]. Armidale: University of New England Publishing Unit.Google Scholar
Faichney, G. J. (1980). Journal of Agricultural Science, Cambridge 94, 313318.CrossRefGoogle Scholar
Faichney, G. J. & White, G. A. (1983). Methods for the Analysis of Feeds Eaten by Ruminants, pp. 39. Melbourne: Commonwealth Scientific and Industrial Research Organisation.Google Scholar
Gaillard, B. D. E. & Richards, G. N. (1975). Carbohydrate Research 42, 135145.CrossRefGoogle Scholar
Ganev, G., Ørskov, E. R. & Smart, R. (1979). Journal of Agricultural Science, Cambridge 93, 651656.CrossRefGoogle Scholar
Gill, M. & Beever, D. E. (1982). British Journal of Nutrition 48, 3747.CrossRefGoogle Scholar
Goering, H. K. & Van soest, P. J. (1970). Forage Fibre Analyses. US Department of Agriculture, Agricultural Handbook no. 379. Washington, DC: US Department of Agriculture.Google Scholar
Harrison, D. G., Beever, D. E. & Osbourn, D. F. (1979). British Journal of Nutrition 41, 521527.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1971). Australian Journal of Agricultural Research 22, 951962.Google Scholar
Hughes-jones, M. (1979). PhD Thesis, University of Aberdeen; cited byGoogle Scholar
ørskov, E. R., Hughes-jones, M.& Mcdonald, I. (1981). In Recent Advances in Animal Nutrition, pp. 8598 [Haresign, Weditor]. London: Butterworths.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York and London: Academic Press.Google Scholar
Hunter, R. A. & Siebert, B. D. (1980). Australian Journal of Agricultural Research 31, 10371047.CrossRefGoogle Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). British Journal of Nutrition 25, 165173.CrossRefGoogle Scholar
Jackson, M. G. (1977). Animal Feed Science and Technology 2, 105130.CrossRefGoogle Scholar
Journet, M. & Verite, R. (1977). In Proceedings of the Second International Symposium on Protein Metabolism and Nutrition [Tamminga, S editor]. Wageningen: Center for Agricultural Publishing and Documentation.Google Scholar
Kellaway, R. C., Crofts, F. C., Thiago, L. R. L., Redman, R. G. & Leibholz, J. M. L. (1978). Animal Feed Science and Technology 3, 201210.CrossRefGoogle Scholar
Kellaway, R. C. & Leibholz, J. (1983). World Animal Review 48, 3337.Google Scholar
Kempton, T. J. & Leng, R. A. (1979). British Journal of Nutrition 42, 289302.CrossRefGoogle Scholar
Kempton, T. J., Nolan, J. V. & Leng, R. A. (1979). British Journal of Nutrition 42, 303315.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1980). Canadian Journal of Animal Science 60, 205221.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1978). British Journal of Nutrition 39, 165179.CrossRefGoogle Scholar
MacRae, J. C. & Reeds, P. J. (1980). In Protein Deposition in Animals, pp. 225237 [Buttery, P. J.and Lindsay, D editors]. London: Butterworths.CrossRefGoogle Scholar
Maeng, W. J., Van Nevet, C. J., Baldwin, R. L. & Morris, J. G. (1976). Journal of Dairy Science 59, 6878.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. L. (1981). British Journal of Nutrition 45, 587604.CrossRefGoogle Scholar
Mehrez, A. Z. & Ørskov, E. R. (1977). Journal of Agricultural Science, Cambridge 88, 645650.CrossRefGoogle Scholar
Ministry of Agriculture, Fisheries and Food (1975). Energy Allowances and Feeding Systems For Ruminants. Technical Bulletin no. 33. London: H.M. Stationery Office.Google Scholar
Neutze, S. A. (1985). Kinetics of nitrogen transfer across the rumen wall of sheep. MScAgr Thesis, University of Sydney.Google Scholar
Ørskov, E. R. (1982). Protein Nutrition in Ruminants, pp. 4084. London: Academic Press.Google Scholar
Ørskov, E. R. & Grubb, D. A. (1978). Journal of Agricultural Science, Cambridge 91, 483486.CrossRefGoogle Scholar
Ørskov, E. R. & McDonald, I. (1979). Journal of Agricultural Science, Cambridge 92, 499503.CrossRefGoogle Scholar
Ørskov, E. R., Mcdonald, I. & Hughes-jones, M. (1981). In Recent Advances in Animal Nutrition, pp. 8598 [ Haresign, W and Lewis, Deditors]. London: Butterworths.Google Scholar
Porter, P. & Singleton, A. G. (1971). British Journal of Nutrition 25, 314.CrossRefGoogle Scholar
Rooke, J. A. & Armstrong, D. G. (1983). Proceedings of the Fourth International Symposium on Proiein Metabolism and Nutrition, pp. 235238 [ Pian, RArnal, M and Bonin, D editors]. Paris: INRA Publications.Google Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for In Vivo Kinetics: Theory and Applications. New York: Academic Press.Google Scholar
Siddons, R. C., Beever, D. E. & Nolan, J. V. (1982). British Journal of Nutrition 48, 377389.CrossRefGoogle Scholar
Siddons, R. C., Beever, D. E., Nolan, J. V., McAllan, A. B. & MacRae, J. C. (1979). Annales de Recherches Veterinaires 10, 286288.Google Scholar
Sriskandarajah, N. & Kellaway, R. C. (1982). Journal of Agricultural Science, Cambridge 99, 241248.CrossRefGoogle Scholar
Sriskandarajah, N. & Kellaway, R. C. (1984). British Journal of Nutrition 51, 289296.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics, 2nd ed. New York: McGraw-Hill.Google Scholar
Tamminga, S. (1979). Journal of Animal Science 49, 16151630.CrossRefGoogle Scholar
Teather, R. M., Erfle, J. D., Boila, R. J. & Sauer, F. D. (1980). Journal of Applied Bacteriology 49, 231238.CrossRefGoogle Scholar
Theurer, C. B. (1982). In Proceedings of an International Symposium on Protein Requirements for Cattle, pp. 1022 [Owens, F. N. editor]. Stillwater: Oklahoma State University Publications.Google Scholar
Van Soest, P. J. (1964). Journal of Animal Science 23, 838845.CrossRefGoogle Scholar
Weston, R. H. (1979). Australian Journal of Agricultural Research 30, 533541.CrossRefGoogle Scholar
Weston, R. H. & Hogan, J. P. (1973). In Pastorial Industries of Australia, pp. 233268 [Alexander, G and Williams, D. B. editors]. Sydney: University of Sydney Press.Google Scholar
Whitelaw, F. G., Eadie, J. M., Bruce, L. A. & Shand, W. J. (1984). British Journal of Nutrition 52, 249260.CrossRefGoogle Scholar
Zinn, R. A. & Owens, F. N. (1983). Journal of Animal Science 56, 707716.CrossRefGoogle Scholar