Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T15:06:58.975Z Has data issue: false hasContentIssue false

Fibrous diets for pigs

Published online by Cambridge University Press:  27 February 2018

W. H. Close*
Affiliation:
Close Consultancy, 129 Barkham Road, Wokingham RG11 2RS
Get access

Abstract

This paper reviews current knowledge on the feeding of fibrous foods to pigs. It attempts to explain why fibrous foods differ in their nutritional value by defining what constitutes ‘dietary fibre’ and by discussing aspects associated with digestion, absorption, fermentation and metabolism in the gastro-intestinal tract. Fibrous diets can contribute proportionately up to 0-3 of the energy requirements of the animal, but there are significant reductions in the digestibility of all nutrients. There is a reduction in energy intake with increase in fibre intake, and this reduces both growth and food utilization efficiency; carcasses may, however, be leaner. Sows are better able to utilize fibre than weaned or growing/ fattening pigs and there may be improvements in reproduction as well as health and welfare benefits. Nutritive values can be improved by processing and deficiencies overcome by the use of synthetic and other materials. There is considerable potential to incorporate fibrous and by-product materials into feeding strategies for pigs in developing countries, with both economic and productive advantages.

Type
Research Article
Copyright
Copyright © British Society of Animal Production 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural Research Council. 1967. The nutrient requirements of farm livestock. No. 3. Pigs. Agricultural Research Council, London.Google Scholar
Agricultural Research Council. 1981. The nutrient requirements of pigs. Commonwealth Agricultural Bureaux, Slough.Google Scholar
Appleby, M. C. and Lawrence, A. B. 1987. Food restriction as a cause of stereotypic behaviour in tethered sows. Animal Production 45:103110.Google Scholar
Argenzio, R. A. and Southworth, M. 1975. Sites of organic acid production and absorption in gastro-intestinal tract of the pig. American journal of Physiology 228:454460.CrossRefGoogle Scholar
Baird, D. M., McCampbell, H. C. and Allison, J. R. 1975. Effect of levels of crude fibre, protein and bulk in diets for finishing hogs. Journal of Animal Science 41:10391047.CrossRefGoogle Scholar
Baker, D. H., Becker, D. E., Jensen, A. H. and Harmon, B. G. 1968. Effect of dietary dilution on performance of finishing swine. Journal of Animal Science 27:13321335.Google Scholar
Bergner, H. 1981. Chemically treated straw meal as a new source of fibre in the nutrition of pigs. Pig News and Information 2:135140.Google Scholar
Blaxter, K. L., 1967. The energy metabolism of ruminants. Hutchinson, London.Google Scholar
Blaxter, K. L. 1989. Energy metabolism in animals and man. Cambridge University Press.Google Scholar
Bolduan, G., Jung, H., Schnabel, E. and Schneider, R. 1988. Recent advances in the nutrition of weaner piglets. Pig News and Information 9:381385.Google Scholar
Brown, D. L. and Chavalimu, E. 1985. Effects of ensiling or drying on five forage species in western Kenya: Zea Mays (maize stoves). Pennisetum purpureum (Pakistan napier grass), Pennisetum sp. (bana grass), Impomea batata (sweet potato vines) and Cajanus cajan (pigeon pea leaves). Animal Feed Science and Technology 13:16.CrossRefGoogle Scholar
Cameron, C. D. T. 1960. Effects of high fibre and pelleted and non-pelleted high fibre-high fat rations on performance and carcass characteristics of bacon pigs. Canadian Journal of Animal Science 40: 126133.CrossRefGoogle Scholar
Christensen, K. and Thorbek, G. 1987. Methane excretion in the growing pig. British Journal of Nutrition 57:355361.Google Scholar
Chwalibog, A., Henkel, S. and Thorbek, G. 1988. Digestibility of crude fibre. In-between animal variation and the influence of age. Proceedings of the fourth international symposium on digestive physiology in the pig (ed. Buraczewska, L., Buraczewski, S., Bastuszewska, B. and Zebrowska, T.), pp. 136139. Institute of Animal Physiology and Nutrition, Jablonna, Poland.Google Scholar
Close, W. H. 1990. The evaluation of feeds through calorimetry studies. In Feedstuff evaluation (ed. Wiseman, J. and Cole, D. J. A.), pp. 2139. Butterworth, London.CrossRefGoogle Scholar
Cranwell, P. D. 1968. Microbial fermentation in the alimentary tract of the pig. Nutrition Abstracts and Reviews 38:721730.Google Scholar
Cunha, J. J. 1980. Action programs to advance swine production efficiency. Journal of Animal Science 51: 14291433.Google Scholar
De Goey, L. W. and Ewan, R. C. 1975. Effect of level of intake and diet dilution on energy metabolism in the young pig. Journal of Animal Science 40:10451051.Google Scholar
Englyst, H., Wiggins, H. S. and Cummings, J. H. 1982. Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst, London 107:307318.Google Scholar
Farrell, D. J. 1973. Digestibility by pigs of the major chemical components of diets high in plant cell-wall constituents. Animal Production 16:4347.Google Scholar
Farrell, D. J. and Johnson, K. A. 1972. Utilization of cellulose by pigs and its effects on caecal function. Animal Production 14:209217.Google Scholar
Fernández, J. A. and Jorgensen, J. N. 1986. Digestibility and absorption of nutrients as affected by fibre content in the diet of the pig. Quantitative aspects. Livestock Production Science 15:5371.Google Scholar
Figueroa, V. 1989. Non-conventional feeding for pigs in Cuba. Pig News and information 10:2933.Google Scholar
Frank, G. R., Aheme, F. X. and Jensen, A. H. 1983. A study of the relationship between performance and dietary component digestibilities by swine fed different levels of dietary fibre. Journal of Animal Science 57:645654.Google Scholar
Gädeken, D., Breves, G. and Oslage, H. J. 1989. Efficiency of energy utilisation of intracaecally infused volatile fatty acids in pigs. In Energy metabolism of farm animals (ed. Van der Honing, Y. and Close, W. H.), publication, European Association for Animal Production, no. 43, pp. 115118. Pudoc, Wageningen.Google Scholar
Giusi-Perier, A., Fiszlewicz, M. and Rérat, A. 1989. Influence of diet composition on intestinal volatile fatty acid and nutrient absorption in un-anaesthetized pigs. Journal of Animal Science 67:386402.Google Scholar
Henry, Y. 1970. Effects nutritionnels de l’incorporation de cellulose purifiée dans le régime du porc en croissance-finition. Annals de Zootechnie 19:117141.CrossRefGoogle Scholar
Henry, Y. 1977. Prediction of energy values of feeds for swine from fibre content. Proceedings of the International Symposium on Feed Composition, Animal Nutrient Requirements and Computerization of Diets (ed. Harris, L. E.), pp. 270281. Utah State University, Logan.Google Scholar
Henry, Y. and Etienne, M. 1969. Effects nutritionnels de l’incorporation de cellulose purifiée dans le régime du porc en croissance-finition. Annals de Zootechnie 18:337357.Google Scholar
Hipsley, E. H. 1953. Dietary fibre and pregnancy toxaemia. British Medical Journal 2: 420422.Google Scholar
Jørgensen, H., Just, A. and Fernández, J. A. 1987. The influence of diet composition on the amount of gut fill, energy disappearing in caecum-colon and utilisation of ME in growing pigs. In Energy metabolism of farm animals (ed. Moe, P. W., Tyrrell, H. F. and Reynolds, P. J.), publication European Association for Animal Production, no. 32, pp. 244-247. Rowman and Littlefield, New Jersey.Google Scholar
Just, A. 1975. Feed evaluation in pigs. World Review of Animal Production 11:1230.Google Scholar
Just, A. 1982. The influence of ground barley straw on the net energy value of diets for growth in pigs. Livestock Production Science 9:717729.Google Scholar
Just, A., Fernández, J. A. and Jørgensen, H. 1983. The net energy value of diets for growth in pigs in relation to the fermentative processes in the digestive tract and the site of absorption of the nutrients. Livestock Production Science 10: 171186.Google Scholar
Just, A., Jorgensen, H. and Fernández, J. A. 1984. Prediction of metabolizable energy for pigs on the basis of crude nutrients in the feeds. Livestock Production Science 11: 105128.Google Scholar
Kass, M. L., Van Soest, P. J., Pond, W. G., Lewis, B. and McDowell, R. E. 1980. Utilization of dietary fiber from alfalfa by growing swine. I. Apparent digestibility of diet components in specific segments of the gastro-intestinal tract. Journal of Animal Science 50:175191.Google Scholar
Kennelly, J. J. and Aherne, F. X. 1980. The effect of fibre in diets formulated to contain different levels of energy and protein on digestibility coefficients in swine. Canadian Journal of Animal Science 60:717726.CrossRefGoogle Scholar
Kirchgessner, M., Roth-Maier, D. A. and Roth, F. 1975. Zum Einfluss von Zellulose- und Spurenelement-Zulagen auf die Verdaulichkeit der Rohmilchstoffe beim Schwein. Züchtungskunde 47:96103.Google Scholar
Koong, L. J., Ferrell, C. L. and Nienaber, J. A. 1985. Assessment of interrelationships among levels of intake and production, organ size and fasting heat production in growing animals. Journal of Nutrition 115:13831390.Google Scholar
Kornegay, E. T. 1978. Feeding value and digestibility of soyabean hulls for swine. Journal of Animal Science 47:12721280.CrossRefGoogle Scholar
Kracht, W., Schroder, H., Rinne, W. and Franke, M. 1977. Tierernährung und Fütterung — Erfahrungen, Ergebnisse, Entwicklungen 9:250259.Google Scholar
Larsen, L. M. and Oldfield, J. E. 1960. Improvement of barley rations for swine. II. Effects of pelleting and supplementation with barley malt. Journal of Animal Science 19:601606.CrossRefGoogle Scholar
Lee, P. and Close, W. H. 1987. Bulky feeds for pigs: a consideration of some non-nutritional aspects. Livestock Production Science 16:395405.CrossRefGoogle Scholar
Lloyd, L. E. and Crampton, E. W. 1955. The apparent digestibility of the crude protein of the pig ration as a function of its crude protein and crude fiber content. Journal of Animal Science 14:693699.Google Scholar
Longland, A. C., Low, A. G. and Keal, H. D. 1988a. Dried molassed and plain sugar-beet pulp in diets for growing pigs. Proceedings of the Nutrition Society 47:102A.Google Scholar
Longland, A. C., Low, A. G. and Keal, H. D. 1988b. The digestibility of growing-pig diets containing dried molassed or plain sugar-beet pulp. Proceedings of the Nutrition Society 47:703A.Google Scholar
Low, A. G., Carruthers, J. C., Longland, A. C. and Harland, J. I. 1990. Performance and digestibility of non-starch polysaccharides in cereals or sugar-beet pulp in pigs of 3 to 8 weeks. Animal Production 50:589 (abstr.).Google Scholar
Mosenthin, R. and Henkel, H. 1983. Influence des substances végétales de soutien sur le métabolisme azoté du porc. In Métabolisme et nutrition azoté (ed. Plow, R., Amai, M. and Bonier, D.), Les Colloques de l’Institut National de la Recherche Agronomique no. 16. INRA, Paris.Google Scholar
Müller, H. L. and Kirchgessner, M. 1982. Effect of straw and cellulose on heat production and energy utilisation in pigs. In Energy metabolism of farm animals (ed. Ekern, A. and Sundstol, F.), publication, European Association for Animal Production, no. 29, pp. 229232. Agricultural University of Norway, Aas.Google Scholar
Müller, H. L. and Kirchgessner, M. 1987. Energy utilisation of pectin and alfalfa meal in pigs. In Energy metabolism of farm animals (ed. Moe, P. W., Tyrrell, H. F. and Reynolds, P. J.), publication, European Association for Animal Production, No. 32, pp. 268271. Rowman and Littlefield, New Jersey.Google Scholar
Münchow, H., Bergner, H., Seifert, H., Schönmuth, G. and Braband, E. 1982. Untersuchungen zum Einsatz von teil-hydrolysiertem und unbehandeltem Strohmehl in der Fütterung von Zuchtsauen. Archiv für Ticrernährung 32:483491. Google Scholar
National Research Council. 1988. Nutrient requirements of swine. National Academy Press, Washington.Google Scholar
Oslage, H. J. 1987. Dietary factors influencing energy metabolism. In Energy metabolism of farm aminais (ed. Moe, P. W., Tyrrell, H. F. and Reynolds, P. J.), publication, European Association for Animal Production, no. 32, pp. 284287. Rowman and Littlefield, New Jersey.Google Scholar
Pals, D. A. and Ewan, R. C. 1978. Utilization of the energy of dried whey and wheat middling by young swine. Journal of Animal Science 46:402408.Google Scholar
Partridge, I. G., Keal, H. D. and Mitchell, K. G. 1982. The utilisation of dietary cellulose by growing pigs. Animal Production 35:209214.Google Scholar
Pollmann, D. S., Danielson, D. M., Crenshaw, M. A. and Peo, E. R. 1980. Long-term effects of dietary additions of alfalfa and tallow on sow reproductive performance. Journal of Animal Science 51:294299.Google Scholar
Pollmann, D. S., Danielson, D. M. and Peo, E. R. 1978. Value of high fiber diets for gravid swine. Journal of Animal Science 48:13851393.Google Scholar
Pond, W. G. 1981. Limitations and opportunities in the use of fibrous and by-product feeds for swine. Proceedings of the Distillers Feed Research Conference, vol. 36, pp. 5973.Google Scholar
Pond, W. G. and Yen, J. T. 1984. Effect of protein deficiency on growth and plasma zinc concentration in genetically lean and obese swine. Journal of Animal Science 58:710716.Google Scholar
Potkins, Z. V., Lawrence, T. L. J. and Thomlinson, J. R. 1984. Studies on the effects of composition and physical form of the diet on gastric abnormalities and nutrient utilization in the growing pig. Animal Production 38: 534 (abstr.).Google Scholar
Potkins, Z. V., Lawrence, T. L. J. and Thomlinson, J. R. 1989. Oesophagogastric parakeratosis in the growing pig: effects on the physical form of barley-based diets and added fibre. Research in Veterinary Science 47:6067.Google Scholar
Rainbird, A. L., Low, A. G. and Zebrowska, T. 1984. Effect of guar gum on glucose and water absorption from isolated loops of jejunum in conscious, growing pigs. British journal of Nutrition 52:489498.Google Scholar
Rérat, A. 1978. Digestion and absorption of carbohydrates and nitrogenous materials in the hindgut of the omnivorous non-ruminant animal, Journal of Animal Science 46: 18081837.Google Scholar
Rérat, A., Fiszelwicz, M., Herpin, P., Vangelade, P. and Durand, M. 1985. Mesure de l’apparition dans la veine portée des acides gras volatils formés au cours de la digestion chez le porc éveillé. Comptes Rendus Académie des Sciences, Paris, Série 3, 350:467470.Google Scholar
Roberts, F. G., Smith, H. A., Low, A. G., Ellis, P. R., Morris, E. R. and Sambrook, I. E. 1990. Influence of guar gum flour of different molecular weights on viscosity of jejunal digesta in the pig. Proceedings of the Nutrition Society 49:53A.Google Scholar
Roth-Maier, D. A. and Kirchgessner, M. 1975. Zur Verdaulichkeit von frischem, siliertem und getrocknetem Maiskolbenschrot bei Schweinen. Wirtschaftseigene Futter 22: 211224.Google Scholar
Seerley, R. W. 1961. The effect of pelleting swine rations on the performance of swine and rats. Dissertation Abstracts 22: 4143.Google Scholar
Southgate, D. A. T. 1969. Determination of carbohydrates in foods. II. Unavailable carbohydrates. Journal of Science, Food and Agriculture 20:331335.Google Scholar
Southgate, D. A. T. 1977. The definition and analysis of dietary fibre. Nutrition Reviews 35:3237.Google Scholar
Stanogias, G. and Pearce, G. R. 1985. The digestion of fibre by pigs. I. The effects of amount and type of fibre on apparent digestibility, nitrogen balance and rate of passage. British Journal of Nutrition 53:513530.Google Scholar
Taverner, M. R., Campbell, R. G. and Biden, R. S. 1984. The effects of dietary energy concentration on the voluntary intake of grower pigs fed a high fibre diet. Proceedings of the Australian Society of Animal Production 15:757.Google Scholar
Trowell, H., Southgate, D. A. T., Wolever, T. M. S., Leeds, A. R., Gassull, M. A. and Jenkins, D. J. A. 1976. Dietary fibre redefined. Lancet 1:967.Google Scholar
Van der Honing, Y., Jongbloed, A. W., Boonzaanier, S. and Van Es, A. J. H. 1985. Sources of variation in the efficiency of utilization of metabolizable energy by growing pigs from compound feeds differing in type and origin of carbohydrates and fat content. In Energy metabolism of farm animals (ed. Moe, P. W., Tyrrell, H. F. and Reynolds, P. J.), publication, European Association for Animal Production, no. 32. Rowman and Littlefield, New Jersey.Google Scholar
Van Soest, P. J. 1963a. Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the Association of Official Agricultural Chemistry 46:825829.Google Scholar
Van Soest, P. J. 1963b. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Agricultural Chemistry 46:829835.Google Scholar
Van Soest, P. J. and McQueen, R. W. 1973. The chemistry and estimation of fibre. Proceedings of the Nutrition Society 32:123130.CrossRefGoogle ScholarPubMed
Zoiopoulos, P. E., English, P. R. and Topps, J. H. 1982. High-fibre diets for ad libitum feeding of sows during lactation. Animal Production 35:2533.Google Scholar
Zoiopoulos, P. E., Topps, J. H. and English, P. R. 1983. Fibrous agro-industrial by-products as protein sources for bacon pigs. 2. Study of digestion with pigs cannulated at the ileum. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 49:219228.Google Scholar