Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T01:04:47.473Z Has data issue: false hasContentIssue false

The Action of Rotenone and Tetraethyl Pyrophosphate on the isolated Heart of the Cockroach*

Published online by Cambridge University Press:  10 July 2009

B. J. Krijgsman
Affiliation:
Laboratory of Comparative Physiology, University of Utrecht.
D. Dresden
Affiliation:
Laboratory of Comparative Physiology, University of Utrecht.
Nelly E. Berger
Affiliation:
Laboratory of Comparative Physiology, University of Utrecht.

Extract

A method based upon Yeager's technique is described permitting the study of the surviving heart of Periplaneta americana under varying conditions for several hours.

Rotenone causes diastolic contractions, decrease of frequency and cessation in diastole, threshold <0·0000005 per cent. Presumably it produces an inhibitory action on the neurogenic automatic cardiac centre.

The latent period of the rotenone action is dependent upon the concentration. Using this principle a method is developed for quantitative estimation of the activity of derris preparations.

Tetraethyl pyrophosphate has a strongly accelerating action on the frequency of the heart and increases the amplitude; in this case there is no latent period. Threshold 0·000008 per cent. Presumably TEPP activates the neurogenic heart automatism by its vigorous anticholinesterase activity.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrowicz, J. S. (1926). J. comp. Neurol., 41, p. 291.CrossRefGoogle Scholar
Ambrose, A. M. & Haag, H. B. (1936). Industr. Engn. Chem., 28, p. 315.Google Scholar
Ambrose, A. M. & Haag, H. B. (1937). Industr. Engn. Chem., 29, p. 429.CrossRefGoogle Scholar
Ambrose, A. M. & Haag, H. B. (1938). Industr. Engn. Chem., 30, p. 592.CrossRefGoogle Scholar
Armstrong, F., Maxfield, M., Prosser, C. L. & Schoepfle, S. (1939). Biol. Bull., 77, p. 327.Google Scholar
Bethe, A. (1926). In Handb. norm. path. Physiol., 7, p. 1.Google Scholar
Von Brücke, E. Th. (1925). In Winterstein Handb. vergl. Physiol., 1 (1) p. 898.Google Scholar
Burger, A. S. V., Keele, C. A., Chennels, M., Del Castello, J., Floyd, W. F., Slome, D. & Wright, S. (1947). Nature, Lond., 160, p. 760.CrossRefGoogle Scholar
Carlson, A. J. (1905). Amer. J. Physiol., 15, p. 127.CrossRefGoogle Scholar
Chadwick, L. E. & Hill, D. L. (1947). J. Neurophysiol., 10, p. 235.CrossRefGoogle Scholar
Crescitelli, F. & Jahn, Th. J. (1938). J. cell. comp. Physiol., 11, p. 359.CrossRefGoogle Scholar
Dresden, D. & Krijgsman, B. J. (1948). Bull. ent. Res., 38, p. 575.CrossRefGoogle Scholar
Dubois, K. P. & Mangun, G. H. (1947). Proc. Soc. exp. Biol. Med., 64, p. 137.CrossRefGoogle Scholar
Dubuisson, M. (1929). Arch. Biol., 39, p. 247.Google Scholar
Duwez, Y. (1938). Arch. int. Physiol., 46, p. 389.Google Scholar
Fries, E. F. S. (1926). J. gen. Physiol., 10, p. 227.CrossRefGoogle Scholar
Haag, H. B. (1921). J. Pharmacol., 43, p. 193.Google Scholar
Hamilton, H. L. (1939). J. cell. comp. Physiol., 13, p. 91.CrossRefGoogle Scholar
Von Hasselt, E. H. (1910). Versl. gewone Vergad. Akad. Amst., 19, p. 704.Google Scholar
Von Hasselt, E. H. (1911). Arch. int. Pharmacodyn., 21, p. 243.Google Scholar
Kirschner, R. (1932). Z. angew. Ent., 19, p. 544.CrossRefGoogle Scholar
Krey, J. (1937). Zool. Jb. (Physiol.), 58, p. 201.Google Scholar
Krijgsman, B. J. & Berger, N. E. (1949). Bull. ent. Res., 40, p. 355.CrossRefGoogle Scholar
Lasch, W. (1913). Z. allg. Physiol., 14, p. 312.Google Scholar
Levy, R. (1928). C. R. Soc. Biol., 99, p. 1482.Google Scholar
Mommaerts, W. H. F. M. (1948). J. gen. Physiol., 31, p. 361.CrossRefGoogle Scholar
Richards, A. G. & Cutkomp, L. H. (1945). J. cell. comp. Physiol., 26, p. 57.CrossRefGoogle Scholar
Roeder, K. D. (1948). J. cell. comp. Physiol., 31, p. 327.CrossRefGoogle Scholar
Roeder, K. D. & Roeder, S. (1939). J. cell. comp. Physiol., 14, p. 1.CrossRefGoogle Scholar
Sasse, E. (1911). Z. allg. Physiol., 13, p. 69.Google Scholar
Shafer, G. D. (1911). Tech. Bull. Mich. agric. Exp. Sta. no. 11, 65 pp.Google Scholar
Steiner, G. (1932). Z. vergl. Physiol., 16, p. 290.Google Scholar
Uramoto, S. (1932). Bull. seric. Exp. Sta. Japan, 8, p. 121.Google Scholar
Walling, L. V. (1908). Kans. Univ. Sci. Bull., 4, p. 359.Google Scholar
Welsh, J. H. & Schallek, W. (1946). Physiol. Rev., 26, p. 447.CrossRefGoogle Scholar
Wiersma, C. A. G. & Novitski, E. (1942). J. exp. Biol., 19, p. 255.CrossRefGoogle Scholar
De Wilde, J. (1947). Arch. néerl. Physiol., 28, p. 530.Google Scholar
Yeager, J. F. (1938). J. agric. Res., 56, p. 267.Google Scholar
Yeager, J. F. (1939). J. agric. Res., 59, p. 121.Google Scholar
Yeager, J. F. & Gahan, J. B. (1937). J. agric. Res., 55, p. 1.Google Scholar
Yeager, J. F. & Hager, A. (1934). Iowa St. Coll. J. Sci., 8, p. 391.Google Scholar
Yeager, J. F., Hager, A. & Straley, J. H. (1935). Ann. ent. Soc. Amer., 28, p. 256.CrossRefGoogle Scholar
Zawarsin, A. (1911). Z. wiss. Zool., 97, p. 481.Google Scholar