Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T22:28:15.439Z Has data issue: false hasContentIssue false

Changes in the potential distribution of the guava fruit fly Anastrepha striata (Diptera, Tephritidae) under current and possible future climate scenarios in Colombia

Published online by Cambridge University Press:  26 November 2021

E. Amat*
Affiliation:
Grupo de Investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia Institución Universitaria, Antioquia, Colombia Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Amazonas, Brazil
M. Altamiranda-Saavedra
Affiliation:
Grupo de Investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia Institución Universitaria, Antioquia, Colombia Grupo de investigación en Comunidad de aprendizaje currículo y didáctica (COMAEFI), Grupo de investigación en Actividad Física y Salud (SIAFYS), Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia
N. A. Canal
Affiliation:
Universidad del Tolima, Facultad de Ingeniería Agronómica, Ibagué, Tolima, Colombia
L. M. Gómez-P
Affiliation:
Grupo de Investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia Institución Universitaria, Antioquia, Colombia
*
Author for correspondence: E. Amat, Email: ecamat@gmail.com

Abstract

Climate change has affected the geographical distributions of most species worldwide; in particular, insects of economic importance inhabiting tropical regions have been impacted. Current and future predictions of change in geographic distribution are frequently included in species distribution models (SDMs). The potential spatial distributions of the fruit fly Anastrepha striata Schiner, the main species of agricultural importance in guava crops, under current and possible future scenarios in Colombia were modeled, and the establishment risk was assessed for each guava-producing municipality in the country. SDMs were developed using 221 geographical records in conjunction with nine scenopoetic variables. The model for current climate conditions indicated an extensive suitable area for the establishment of A. striata in the Andean region, smaller areas in the Caribbean and Pacific, and almost no areas in the Orinoquia and Amazonian regions. A brief discussion regarding the area's suitability for the fly is offered. According to the results, altitude is one of the main factors that direct the distribution of A. striata in the tropics. The Colombian guava-producing municipalities were classified according to the degree of vulnerability to fly establishment as follows: 42 were high risk, 16 were intermediate risk, and 17 were low risk. The implementation of future integrated management plans must include optimal spatial data and must consider environmental aspects, such as those suggested by the models presented here. Control decisions should aim to mitigate the positive relationship between global warming and the increase in the dispersal area of the fruit fly.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agronet (2018) Área, Producción y Rendimiento Nacional de la guayaba en Colombia. Red de Información y Comunicación Del Sector Agropecuario. Ministerio de Agricultura y Desarrollo Rural, Republica de Colombia. http://www.agronet.gov.co.Google Scholar
Altamiranda-Saavedra, M, Arboleda, S, Parra, JL, Peterson, AT and Correa, MM (2017) Potential distribution of mosquito vector species in a primary malaria endemic region of Colombia. PLoS ONE 12, 114.CrossRefGoogle Scholar
Aluja, M and Mangan, RL (2008) Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Annual Review of Entomology 53, 473502.CrossRefGoogle ScholarPubMed
Aluja, M, Rull, J, Sivinski, J, Norrbom, AL, Wharton, RA, Macías-Ordóñez, R, Díaz-Fleischer, F and López, M (2003) Fruit flies of the genus Anastrepha (Diptera: Tephritidae) and associated native parasitoids (Hymenoptera) in the Tropical Rainforest Biosphere Reserve of Montes Azules, Chiapas, Mexico. Environmental Entomology 32, 13771385.CrossRefGoogle Scholar
Anderson, RP and Martínez-Meyer, E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation 116, 167179.CrossRefGoogle Scholar
Baker, AC, Stone, WE, Plummer, CC and McPhail, M (1944) A Review of Studies on the Mexican Fruitfly and Related Mexican species. USA: Department of Agriculture.Google Scholar
Barbet-Massin, M, Jiguet, F, Albert, CH and Thuiller, W (2012) Selecting pseudo-absences for species distribution models: how, where, and how many? Methods in Ecology and Evolution 3, 327338.CrossRefGoogle Scholar
Barve, N, Barve, V, Jiménez-Valverde, A, Lira-Noriega, A, Maher, SP, Peterson, AT, Soberón, J and Villalobos, F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222, 18101819.CrossRefGoogle Scholar
Basanta, MD, Rebollar, EA and Parra-Olea, G (2019) Potential risk of Batrachochytrium salamandrivorans in Mexico. PLoS ONE 14, 113.CrossRefGoogle ScholarPubMed
Beckler, AA, French, BW and Chandler, LD (2005) Using GIS in areawide pest management: a case study in South Dakota. Transactions in GIS 9, 109127.CrossRefGoogle Scholar
Beever, E and Belant, J (2016) Ecological Consequences of Climate Change Mechanisms, Conservation, and Management. Boca Raton, USA: CRC Press.CrossRefGoogle Scholar
Bouyer, J, Cox, ST, Guerrini, L, Lancelot, R, Dicko, AHH and Vreysen, MJV (2021) Using geographic information systems and spatial modelling in area-wide integrated pest management programmes that integrate the sterile insect technique. In Dyck, VA, Hendrichs, J, Robinson, AS (eds), Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management, 2nd Edn. New York: CRC Press, pp. 703729, 1200.CrossRefGoogle Scholar
Campo, BVH, Hyman, G and Bellotti, A (2011) Threats to cassava production: known and potential geographic distribution of four key biotic constraints. Food Security 3, 329345.CrossRefGoogle Scholar
Canal, NA (2010) New species and records of Anastrepha (Diptera: Tephritidae) from Colombia. Zootaxa 44, 3244.CrossRefGoogle Scholar
Castañeda, M, Osorio, FA, Canal, NA and Galeano, P (2010) Species, distribution and hosts of the genus Anastrepha Schiner in the Department of Tolima, Colombia. Agronomía Colombiana 28, 264272.Google Scholar
CEPAL (2015) The Economics of Climate Change in Latin America and the Caribbean: Paradoxes and Challenges of Sustainable Development. Santiago, Chile: United Nations: Comisión Económica para América Latina y el Caribe.Google Scholar
Cruz-B, MI, Bacca, T and Canal, NA (2017) Diversidad de las moscas de las frutas (Diptera: Tephritidae) y sus parasitoides en siete municipios del departamento de Nariño. Boletín Científico Centro de Museos Museo de Historia Natural de la Universidad de Caldas 21, 8198.Google Scholar
Cruz-López, L, Malo, EA and Rojas, JC (2015) Sex pheromone of Anastrepha striata. Journal of Chemical Ecology 41, 458464.CrossRefGoogle ScholarPubMed
Diniz-Filho, JAF, Nabout, JC, Telles, MPC, Soares, TN and Rangel, TFLVB (2009) A review of techniques for spatial modeling in geographical, conservation and landscape genetics. Genetics and Molecular Biology 32, 203211.CrossRefGoogle ScholarPubMed
Duyck, P-F, David, P and Quilici, S (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecological Entomology 29, 511520.CrossRefGoogle Scholar
EPPO (2021) European and Mediterranean Plant Protection Organization (EPPO) Global Database (available online). https://gd.eppo.int.Google Scholar
Freeman, BG, Scholer, MN, Ruiz-Gutierrez, V and Fitzpatrick, JW (2018) Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proceedings of the National Academy of Sciences 115, 1198211987.CrossRefGoogle Scholar
Fu, L, Li, ZH, Huang, GS, Wu, XX, Ni, WL and , WW (2014) The current and future potential geographic range of West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae). Insect Science 21, 234244.CrossRefGoogle Scholar
Gallo-Franco, JJ, Velasco-Cuervo, SM, Aguirre-Ramírez, E, González, OR, Carrejo, NS and Toro-Perea, N (2017) Genetic diversity and population structure of Anastrepha striata (Diptera: Tephritidae) in three natural regions of southwestern Colombia using mitochondrial sequences. Genetica 145, 7989.CrossRefGoogle ScholarPubMed
Gamaliel, I, Buba, Y, Guy-Haim, T, Garval, TD, Rilov, G and Belmaker, J (2020) Incorporating physiology into species distribution models moderates the projected impact of warming on selected Mediterranean marine species. Ecography 43, 10901106.CrossRefGoogle Scholar
Godefroid, M, Cruaud, A, Rossi, JP and Rasplus, JY (2015) Assessing the risk of invasion by tephritid fruit flies: intraspecific divergence matters. PLoS ONE 10, 119.CrossRefGoogle ScholarPubMed
Guisan, A and Zimmermann, NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147186.CrossRefGoogle Scholar
Hernández-Camacho, J and Sanchez-Páez, H (1992) Biomas terrestres de Colombia and Halffter, D (ed.), La Diversidad Biológica Iberoamericana I. Xalapa, México: Acta Zoológica Mexicana, pp. 153173.Google Scholar
Hernández-Ortiz, V, Canal, NA, Salas, JO, Ruíz-Hurtado, FM and Dzul-Cauich, JF (2015) Taxonomy and phenotypic relationships of the Anastrepha fraterculus complex in the Mesoamerican and Pacific Neotropical dominions (Diptera, Tephritidae). ZooKeys 540, 95124.CrossRefGoogle Scholar
Hijmans, RJ, Cameron, SE, Parra, JL, Jones, PG and Jarvis, A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
ICA (2016) Plan de manejo moscas de la fruta. In Plan nacional moscas de la fruta. Boletín Epidemiológico. Web page: https://www.ica.gov.co/getattachment/eb152406-4b6d-4d4f-b363-08c7acda6697/Plan-de-Manejo-de-Moscas-de-La-Fruta.aspx.Google Scholar
ICA (2020) Reporte de producción Agrícola – Instituto Colombiano Agropecuario (ICA) – Ministerio de Agricultura. Web Page: http://www.ica.gov.co/.Google Scholar
IGAC (2021) Regiones Naturales de Colombia - Instituto Geográfico Agustín Codazzi. Web Page: https://www.colombiaenmapas.gov.co/#.Google Scholar
Insuasty, OI, Cuadro, MJ, Monroy, RJ and Bautista, DJ (2007) Manejo Integrado de Moscas de la Fruta de la Guayaba (Anastrepha spp.). Colombia: Corpoica, Agrosavia, Sena, Colciencias.Google Scholar
Lehmann, P, Ammunét, T, Barton, M, Battisti, A, Eigenbrode, SD, Jepsen, JU, Kalinkat, G, Neuvonen, S, Niemelä, P, Terblanche, JS, Økland, B and Björkman, C (2020) Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment 18, 141150.CrossRefGoogle Scholar
Lira-Noriega, A, Soberón, J and Miller, CP (2013) Process-based and correlative modeling of desert mistletoe distribution: a multiscalar approach. Ecosphere (Washington, D.C.) 4, art99.Google Scholar
Martinez-Alava, JO (2007) Nuevos registros en el género Anastrepha (Diptera: Tephritidae) para Colombia. Revista Colombiana de Entomología 33, 3642.CrossRefGoogle Scholar
Martinez, JO and Serna, FJ (2005) Identificación y localización geográfica de especies del género Anastrepha Schiner (Diptera: Tephritidae) en Cundinamarca (Colombia). Agronomía Colombiana 23, 102111.Google Scholar
Martínez-Ardila, NJ, Jaramillo-Rodríguez, O and Robertson, K (2005) Amenazas naturales en el litoral Pacífico colombiano asociadas al ascenso del nivel del mar. Cuadernos de Geografía 14, 8396.Google Scholar
Martínez-Freiría, F, Tarroso, P, Rebelo, H and Brito, JC (2016) Contemporary niche contraction affects climate change predictions for elephants and giraffes. Diversity and Distributions 22, 432444.CrossRefGoogle Scholar
Meinshausen, M, Smith, SJ, Calvin, K, Daniel, JS, Kainuma, MLT, Lamarque, J-F, Matsumoto, K, Montzka, SA, Raper, SCB, Riahi, K, Thomson, A, Velders, GJM and van Vuuren, DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213241.CrossRefGoogle Scholar
Muscarella, R, Galante, PJ, Soley-Guardia, M, Boria, RA, Kass, JM, Uriarte, M and Anderson, RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5, 11981205.CrossRefGoogle Scholar
Norrbom, AL (2004) Host plant database for Anastrepha and Toxotrypana (Diptera: Tephritdae Toxotrypanini) – Diptera Dissemination Disk2.Google Scholar
Núñez, L, Gómez, R, Guarín, G and León, G (2004) Moscas de las frutas (Díptera: Tephritidae) y parasitoides asociados con Psidium guajava L. y Coffea arabica L. en tres municipios de la Provincia de Vélez (Santander, Colombia). Revista Corpoica 5, 1321.Google Scholar
Olson, DM, Dinerstein, E, Wikramanayake, ED, Burgess, ND, Powell, GVN, Underwood, EC, D'amico, JA, Itoua, I, Strand, HE, Morrison, JC, Loucks, CJ, Allnutt, TF, Ricketts, TH, Kura, Y, Lamoreux, JF, Wettengel, WW, Hedao, P and Kassem, KR (2001) Terrestrial ecoregions of the world: A new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933938.CrossRefGoogle Scholar
Parra, OC (2014) Sinopsis de la familia Myrtaceae y clave para la identificación de los géneros nativos e introducidos en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales 38, 261277.CrossRefGoogle Scholar
Parra, JL, Graham, CC and Freile, JF (2004) Evaluating alternative data sets for ecological niche models of birds in the Andes. Ecography 27, 350360.CrossRefGoogle Scholar
Pérez-Staples, D and Aluja, M (2004) Anastrepha striata (Diptera: Tephritidae) females that mate with virgin males live longer. Annals of the Entomological Society of America 6, 13361341.CrossRefGoogle Scholar
Peterson, AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics 3, 5972.CrossRefGoogle Scholar
Peterson, AT, Papes, M and Soberón, J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 3, 6372.CrossRefGoogle Scholar
Peterson, AT, Soberón, J, Pearson, RG, Anderson, RP, Martínez-Meyer, E, Nakamura, M and Araújo, MB (2011) Ecological Niches and Geographic Distributions. New Jersey: Princeton University Press.CrossRefGoogle Scholar
Peterson, AT, Cobos, ME and Jiménez-García, D (2018) Major challenges for correlational ecological niche model projections to future climate conditions. Annals of the New York Academy of Sciences 1429, 6677.CrossRefGoogle ScholarPubMed
Phillips, SJ, Anderson, RP and Schapire, RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231259.CrossRefGoogle Scholar
Porter, JH, Parry, ML and Carter, TR (1991) The potential effects of climatic change on agricultural insect pests. Agricultural and Forest Meteorology 57, 221240.CrossRefGoogle Scholar
Raghavan, RK, Barker, SC, Cobos, ME, Barker, D, Teo, EJM, Foley, DH, Nakao, R, Lawrence, K, Heath, ACG and Peterson, AT (2019) Potential spatial distribution of the newly introduced long-horned tick, Haemaphysalis longicornis in North America. Scientific Reports 9, 498.CrossRefGoogle ScholarPubMed
Régnière, J, Powell, J, Bentz, B and Nealis, V (2012) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. Journal of Insect Physiology 58, 634647.CrossRefGoogle ScholarPubMed
Reyes, J and Lira-Noriega, A (2020) Current and future global potential distribution of the fruit fly Drosophila suzukii (Diptera: Drosophilidae). The Canadian Entomologist 152, 587599.CrossRefGoogle Scholar
Rodriguez, CPA, Norrbom, AL, Arevalo, PE, Balseiro, TF, Diaz, PA, Benitez, MC, Gallego, J, Cruz, MI, Montes, JM, Rodriguez, EJ, Steck, GJ, Sutton, BD, Quisberth, RE, Lagrava, SJJ and Colque, F (2018) New records of Anastrepha (Diptera: Tephritidae) primarily from Colombia. Zootaxa 4390, 163.Google Scholar
Ruíz-Hurtado, F, Ramírez, J, Rojas, B, Galeano, P and Canal, NA (2013) Diversidad de parasitoides (Hymenoptera) de moscas frugívoras (Diptera:Tephritoidea) en dos áreas cafeteras del departamento del Tolima, Colombia. Revista Tumbaga 8, 2953.Google Scholar
Saavedra-Díaz, J, Galeano-Olaya, PE and Canal, NA (2017) Relaciones ecológicas entre frutos hospederos, moscas frugívoras y parasitoides en un fragmento de bosque seco tropical. Revista de Ciencias Agrícolas 34, 3249.CrossRefGoogle Scholar
Salazar-Mendoza, P, Peralta-Aragón, I, Romero-Rivas, L, Salamanca, J and Rodriguez-Saona, C (2021) The abundance and diversity of fruit flies and their parasitoids change with elevation in guava orchards in a tropical Andean forest of Peru, independent of seasonality. PLoS ONE 16, e0250731.CrossRefGoogle Scholar
Sequeira, R, Millar, L and Bartels, D (2001) Identification of Susceptible Areas for the Establishment of Anastrepha spp. Fruit Flies in the United States and Analysis of Selected Pathways. Raleigh, NC: USDA-APHISPPQ Center for Plant Health Science and Technology, p. 47.Google Scholar
Sheldon, KS (2019) Climate change in the tropics: ecological and evolutionary responses at low latitudes. Annual Review of Ecology, Evolution, and Systematics 50, 303333.CrossRefGoogle Scholar
Tigrero, JO and Norrbom, AL (2020) A new species of Anastrepha (Diptera: Tephritidae) reared from Passiflora putumayensis (Passifloraceae) in Ecuador. Proceedings of the Entomological Society of Washington 122, 982991.CrossRefGoogle Scholar
Vieira, IC (2019) Land use drives change in Amazonian tree species. Anais Da Academia Brasileira de Ciências 91, 15.CrossRefGoogle ScholarPubMed
Villacide, JM and Corley, JC (2003) Distribución potencial del parasitoide Ibalia leucospoides (Hymenoptera: Ibaliidae) en la Argentina. Quebrancho – Revista de Ciencias Forestales 10, 713.Google Scholar
Ward, JD, Mohr, SH, Myers, BR and Nel, WP (2012) High estimates of supply constrained emissions scenarios for long-term climate risk assessment. Energy Policy 51, 598604.CrossRefGoogle Scholar
Yañez-Arenas, C, Peterson, TA, Rodríguez-Medina, K and Barve, N (2016) Mapping current and future potential snakebite risk in the new world. Climatic Change 134, 697711.CrossRefGoogle Scholar
Supplementary material: File

Amat et al. supplementary material

Amat et al. supplementary material

Download Amat et al. supplementary material(File)
File 22.8 KB