Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-21T15:19:25.608Z Has data issue: false hasContentIssue false

The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review

Published online by Cambridge University Press:  10 July 2009

M. T. Gillies
Affiliation:
School of Biological Sciences, University of Sussex, Brighton, BN1 9QG, UK

Abstract

From a critical review of the literature, it is concluded that the role of carbon dioxide in host-seeking by mosquitoes comprises two distinct actions. Firstly, it acts as an ‘attractant’, orientation towards the host being mediated by kinesis and optomotor anemotaxis. When tested in the absence of moving air currents, orientation to the source is not possible and only the kinetic or ‘activating’ effect is manifested. Moreover, in the absence of other host factors, sustained flight takes place only in response to intermittent pulses of carbon dioxide; this response is not elicited in uniformly permeated airstreams. Secondly, carbon dioxide has a combined action with warm moist convection currents at close range and with odour factors at a distance from the host.

Type
Review article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acree, F., Turner, R. B., Gouck, H. K., Beroza, M. & Smith, N. (1968). L-lactic acid: a mosquito attractant isolated from humans.—Science, N.Y. 161, 13461347.CrossRefGoogle ScholarPubMed
Bar-Zeev, M., Maibach, H. I. & Khan, A. A. (1977). Studies on the attraction of Aedes aegypti (Diptera: Culicidae) to man.—J. med. Entomol. 14, 113120.CrossRefGoogle ScholarPubMed
Bässler, U. (1958). Versuche der Orientierung der Stechmücken: die Schwarmbildung and die Bedeutung des Johnstonschen Organs.—Z. vergl: Physiol. 41, 300330.CrossRefGoogle Scholar
Bos, H. J. & Laarman, J. J. (1975). Guinea pig, lysine. cadaverine and estradiol as attractants for the malaria mosquito Anopheles stephensi.—Entomologia exp. appl. 18, 161172.CrossRefGoogle Scholar
Bossert, W. H. & Wilson, E. O. (1963). The analysis of olfactory communication among animals.—J. theor. Biol. 5, 443469.CrossRefGoogle ScholarPubMed
Brouwer, R. (1960). Variations in human body odour as a cause of individual differences of attraction for malaria mosquitoes.—Trop. geogr. Med. 12, 186192.Google Scholar
Brown, A. W. A. (1952). Factors in the attractiveness of bodies for mosquitoes. Trans. IXth Int. Congr. Ent. 1, 895900.Google Scholar
Burgess, L. (1959). Probing behaviour of Aedes aegypti (L.) in response to heat and moisture.—Nature, Lond. 184, 19681969.CrossRefGoogle Scholar
Carlson, D. A., Smith, N., Gouck, H. K. & Godwin, D. R. (1973). Yellowfever mosquitoes: compounds related to lactic acid that attract females. J. econ. Ent. 66, 329331.CrossRefGoogle Scholar
Cornet, M. & Chateau, R. (1971). Intérêt du gaz carbonique dans les enquêtes sur les vecteurs sylvatiques du virus amaril. Note préliminaire. Cah. ORSTOM, Ent. méd. Parasit. 9, 301305.Google Scholar
Davis, E. E. & Sokolove, P. G. (1976). Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti.—J. comp. Physiol., A 105, 4354.CrossRefGoogle Scholar
Daykin, P. N., Kellogg, F. E. & Wright, R. H. (1965). Host-finding and repulsion of Aedes aegypti.—Can. Ent. 97, 239263.CrossRefGoogle Scholar
Farkas, S. R. & Shorey, H. H. (1974). Mechanisms of orientation to a distant pheromone source.—pp. 8195 in Birch, M. C. (Ed.). Pheromones.—495 pp. Amsterdam, North Holland Publishing Co.Google Scholar
Gillies, M. T. (1974). Methods for assessing the density and survival of blood-sucking Diptera.—A. Rev. Ent. 19, 345362.CrossRefGoogle ScholarPubMed
Gillies, M. T. & Snow, W. F. (1967). A CO2-baited sticky trap for mosquitoes. Trans. R. Soc. trop. Med. Hyg. 61, 20.Google Scholar
Gillies, M. T. & Wilkes, T. J. (1969). A comparison of the range of attraction of animal baits and of carbon dioxide for some West African mosquitoes.—Bull. ent. Res. 59, 441456.CrossRefGoogle ScholarPubMed
Gillies, M. T. & Wilkes, T. J. (1970). The range of attraction of single baits for some West African mosquitoes.—Bull. ent. Res. 60, 225235.CrossRefGoogle ScholarPubMed
Gillies, M. T. & Wilkes, T. J. (1972). The range of attraction of animal baits and carbon dioxide for mosquitoes. Studies in a freshwater area of West Africa.—Bull. ent. Res. 61, 389404.CrossRefGoogle Scholar
Gillies, M. T. & Wilkes, T. J. (1974). The range of attraction of birds as baits for some West African mosquitoes (Diptera, Culicidae).—Bull. ent. Res. 63, 573581.CrossRefGoogle Scholar
Hocking, B. (1971). Blood-sucking behavior of terrestrial arthropods.—A. Rev. Ent. 16, 126.CrossRefGoogle ScholarPubMed
Kellogg, F. E. (1970). Water vapour and carbon dioxide receptors in Aedes aegypti.—J. Insect Physiol. 16, 99108.CrossRefGoogle ScholarPubMed
Kennedy, J. S. (1940). The visual responses of flying mosquitoes.—Proc. zool. Soc. Lond. (A) 109, 221242.CrossRefGoogle Scholar
Kennedy, J. S. (1977 a). Olfactory responses to distant plants and other odor sources.—pp. 6791 in Shorey, H. H. & McKelvey, J. J. Jr. (Eds.). Chemical control of insect behavior. Theory and application.—414 pp. New York, John Wiley.Google Scholar
Kennedy, J. S. (1977 b). Behaviorally discriminating assays of attractants and repellents.—pp. 215229 in Shorey, H. H. & McKelvey, J. J. Jr. (Eds.). Chemical control of insect behavior. Theory and application.—414 pp. New York, John Wiley.Google Scholar
Kennedy, J. S. & Marsh, D. (1974). Pheromone-regulated anemotaxis in flying moths.—Science, N. Y. 184, 9991001.CrossRefGoogle ScholarPubMed
Khan, A. A. (1977). Mosquito attractants and repellents.—pp. 305325 in Shorey, H. H. & McKelvey, J. J. Jr. (Eds.). Chemical control of insect behavior. Theory and application. 414 pp. New York, John Wiley.Google Scholar
Khan, A. A. & Maibach, H. I. (1966). Quantitation of effect of several stimuli on landing and probing by Aedes aegypti.—J. econ. Ent. 59, 902905.CrossRefGoogle Scholar
Khan, A. A. & Maibach, H. I. (1972). Effect of human breath on mosquito attraction to man.—Mosquito News 32, 1115.Google Scholar
Khan, A. A., Maibach, H. I., Strauss, W. G. & Fenley, W. R. (1966). Quantitation of effect of several stimuli on the approach of Aedes aegypti.—J. econ. Ent. 59, 690694.CrossRefGoogle ScholarPubMed
Klassen, W. & Hocking, B. (1964). The influence of a deep river valley system on the dispersal of Aedes mosquitos.—Bull. ent. Res. 55, 289304.CrossRefGoogle Scholar
Laarman, J. J. (1955). The host-seeking behaviour of the malaria mosquito Anopheles maculipennis atroparvus.—Acta Leidensia 25, 1144.Google ScholarPubMed
Laarman, J. J. (1958). The host-seeking behaviour of anopheline mosquitoes.—Trop. geogr. Med. 10, 293305.Google ScholarPubMed
Laarman, J. J. (1959). Host-seeking behaviour of malaria mosquitoes.—Proc. XVth Int. Congr. Zool. 1958, 648649.Google Scholar
Mayer, M. S. & James, J. D. (1969). Attraction of Aedes aegypti (L.): responses to human arms, carbon dioxide, and air currents in a new type of olfactometer.—Bull ent. Res. 58, 629642.CrossRefGoogle Scholar
Mayer, M. S. & James, J. D. (1970). Attraction of Aedes aegypti. II. Velocity of reaction to host with and without additional carbon dioxide.—Entomologia exp. appl. 13, 4753.CrossRefGoogle Scholar
McIver, S. B. (1968). Host preferences and discrimination by the mosquitoes Aedes aegypti and Culex tarsalis (Diptera: Culicidae).—J. med. Entomol. 5, 422428.CrossRefGoogle Scholar
Müller, W. (1968). Die Distanz- und kontakt-Orientierung der Stechmücken (Aedes aegypti) (Wirtsfindung, Stechverhalten und Blutmahlzeit).—Z. vergl. Physiol. 58, 241303.CrossRefGoogle Scholar
Omer, S. M. (1979). Responses of females of Anopheles arabiensis and Culex pipiens fatigans to air currents, carbon dioxide and human hands in a flight-tunnel.—Entomologia exp. appl. 26, 142151.CrossRefGoogle Scholar
Omer, S. M. & Gillies, M. T. (1971). Loss of response to carbon dioxide in palpectomized female mosquitoes.—Entomologia exp. appl. 14, 251252.Google Scholar
Reeves, W. C. (1951). Field studies on carbon dioxide as a possible host simulant to mosquitoes.—Proc. Soc. exp. Biol. Med. 77, 6466.CrossRefGoogle ScholarPubMed
Richards, P. W. (1952). The tropical rain forest.—450 pp. Cambridge University Press.Google Scholar
Roessler, P. (1961). Versuche zur geruchlichen Anlockung weiblicher Stechmücken (Aedes aegypti L., Culicidae).—Z. vergl. Physiol. 44, 184231.CrossRefGoogle Scholar
Schreck, C. E., Gouck, H. K. & Posey, K. H. (1972). The range of effectiveness and trapping efficiency of a plexiglass mosquito trap baited with carbon dioxide.—Mosquito News 32, 496501.Google Scholar
Schreck, C. E., Gouck, H. K. & Smith, N. (1967). An improved olfactometer for use in studying mosquito attractants and repellents.—J. econ. Ent. 60, 11881190.CrossRefGoogle Scholar
Service, M. W. (1969). The use of traps in sampling mosquito populations.—Entomologia exp. appl. 12, 403412.CrossRefGoogle Scholar
Service, M. W. (1976). Mosquito ecology. Field sampling methods.—583 pp. London, Applied Science Publishers Ltd.Google Scholar
Smith, C. N., Smith, N., Gouck, H. K., Weidhaas, D. E., Gilbert, I. H., Mayer, M. S., Smittle, B. J. & Hofbauer, A. (1970). L-lactic acid as a factor in the attraction of Aedes aegypti (Diptera: Culicidae) to human hosts.—Ann. ent. Soc. Am. 63, 760770.CrossRefGoogle ScholarPubMed
Snow, W. F. (1970). The effect of a reduction in expired carbon dioxide on the attractiveness of human subjects to mosquitoes.—Bull. ent. Res. 60, 4348.CrossRefGoogle Scholar
Tregear, R. T. (1966). Physical functions of skin.—185 pp. London, Academic Press.Google Scholar
Van Thiel, P. H. & Weurman, C. (1947). L'attraction exercée sur Anopheles maculipennis atro parvus par l'acide carbonique dans l'appareil de choix II.—Acta trop. 4, 19.Google Scholar
Willis, E. R. & Roth, L. M. (1952). Reactions of Aedes aegypti (L.) to carbon dioxide.—J. exp. Zool. 121, 149179.CrossRefGoogle Scholar
Wright, R. H. (1958). The olfactory guidance of flying insects.—Can. Ent. 90, 8189.CrossRefGoogle Scholar
Wright, R. H., Daykin, P. N. & Kellogg, F. E. (1965). Reaction of flying mosquitoes to various stimuli.—Proc. XIIth Int. Congr. Ent. 1964, 281282.Google Scholar
Wright, R. H. & Kellogg, F. E. (1962). Response of Aedes aegypti to moist convection currents.—Nature, Lond. 194, 402403.CrossRefGoogle ScholarPubMed