No CrossRef data available.
Published online by Cambridge University Press: 18 July 2023
We present some results related to Zilber’s Exponential-Algebraic Closedness Conjecture, showing that various systems of equations involving algebraic operations and certain analytic functions admit solutions in the complex numbers. These results are inspired by Zilber’s theorems on raising to powers.
We show that algebraic varieties which split as a product of a linear subspace of an additive group and an algebraic subvariety of a multiplicative group intersect the graph of the exponential function, provided that they satisfy Zilber’s freeness and rotundity conditions, using techniques from tropical geometry.
We then move on to prove a similar theorem, establishing that varieties which split as a product of a linear subspace and a subvariety of an abelian variety A intersect the graph of the exponential map of A (again under the analogues of the freeness and rotundity conditions). The proof uses homology and cohomology of manifolds.
Finally, we show that the graph of the modular j-function intersects varieties which satisfy freeness and broadness and split as a product of a Möbius subvariety of a power of the upper-half plane and a complex algebraic variety, using Ratner’s orbit closure theorem to study the images under j of Möbius varieties.
Abstract prepared by Francesco Paolo Gallinaro
Supervised by Vincenzo Mantova.