No CrossRef data available.
Published online by Cambridge University Press: 28 February 2022
Given a finite lattice L that can be embedded in the recursively enumerable (r.e.) Turing degrees $\langle \mathcal {R}_{\mathrm {T}},\leq _{\mathrm {T}}\rangle $ , we do not in general know how to characterize the degrees $\mathbf {d}\in \mathcal {R}_{\mathrm {T}}$ below which L can be bounded. The important characterizations known are of the $L_7$ and $M_3$ lattices, where the lattices are bounded below $\mathbf {d}$ if and only if $\mathbf {d}$ contains sets of “fickleness” $>\omega $ and $\geq \omega ^\omega $ respectively. We work towards finding a lattice that characterizes the levels above $\omega ^2$ , the first non-trivial level after $\omega $ . We introduced a lattice-theoretic property called “ $3$ -directness” to describe lattices that are no “wider” or “taller” than $L_7$ and $M_3$ . We exhaust the 3-direct lattices L, but they turn out to also characterize the $>\omega $ or $\geq \omega ^\omega $ levels, if L is not already embeddable below all non-zero r.e. degrees. We also considered upper semilattices (USLs) by removing the bottom meet(s) of some 3-direct lattices, but the removals did not change the levels characterized. This leads us to conjecture that a USL characterizes the same r.e. degrees as the lattice on which the USL is based. We discovered three 3-direct lattices besides $M_3$ that also characterize the $\geq \omega ^\omega $ -levels. Our search for a $>\omega ^2$ -candidate therefore involves the lattice-theoretic problem of finding lattices that do not contain any of the four $\geq \omega ^\omega $ -lattices as sublattices.
Abstract prepared by Liling Ko.
E-mail: ko.390@osu.edu
Supervised by Peter Cholak.