No CrossRef data available.
Article contents
THE DISTRIBUTIONAL $k$-HESSIAN IN FRACTIONAL SOBOLEV SPACES
Published online by Cambridge University Press: 23 October 2019
Abstract
We introduce the notion of a distributional $k$-Hessian ($k=2,\ldots ,n$) associated with fractional Sobolev functions on $\unicode[STIX]{x1D6FA}$, a smooth bounded open subset in $\mathbb{R}^{n}$. We show that the distributional $k$-Hessian is weakly continuous on the fractional Sobolev space $W^{2-2/k,k}(\unicode[STIX]{x1D6FA})$ and that the weak continuity result is optimal, that is, the distributional $k$-Hessian is well defined in $W^{s,p}(\unicode[STIX]{x1D6FA})$ if and only if $W^{s,p}(\unicode[STIX]{x1D6FA})\subseteq W^{2-2/k,k}(\unicode[STIX]{x1D6FA})$.
- Type
- Research Article
- Information
- Copyright
- © 2019 Australian Mathematical Publishing Association Inc.
Footnotes
This work is supported by Hubei Key Laboratory of Applied Mathematics, Hubei University.