Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T23:40:19.439Z Has data issue: false hasContentIssue false

An uncertainty principle for the Dunkl transform

Published online by Cambridge University Press:  17 April 2009

Margit Rösler
Affiliation:
Zentrum MathematikTechnische Universität MünchenArcisstr. 21, D-80290 München, Germany e-mail: roesler@mathematik.tu-muenchen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This note presents an analogue of the classical Heisenberg-Weyl uncertainty principle for the Dunkl transform on ℝN. Its proof is based on expansions with respect to generalised Hermite functions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Baker, T.H. and Forrester, P.J., ‘Non-symmetric Jack polynomials and integral kernels’, Duke Math. J. 95 (1998), 150.CrossRefGoogle Scholar
[2]Bruijn, N.G de, ‘Uncertainty principles in Fourier analysis’, in Inequalities, (Shisha, O., Editor) (Academic Press, New York, 1967), pp. 5771.Google Scholar
[3]Chihara, T.S., An introduction to orthogonal polynomials, Mathematics and its Applications (Gordon and Breach, New York, 1978).Google Scholar
[4]Donoho, D.L. and Stark, P.B., ‘Uncertainty principle and signal recovery’, SIAM J. Appl. Math. 49 (1989), 906931.Google Scholar
[5]Dunkl, C.F., ‘Differential-difference operators associated to reflection groups’, Trans. Amer. Math. Soc. 311 (1989), 167183.CrossRefGoogle Scholar
[6]Dunkl, C.F., ‘Integral kernels with reflection group invariance’, Canad. J. Math. 43 (1991), 12131227.Google Scholar
[7]Jeu, M.F.E. de, ‘The Dunkl transform.’, Invent. Math. 113 (1993), 147162.CrossRefGoogle Scholar
[8]Jeu, M.F.E. de, ‘An uncertainty principle for integral operators’, J. Funct. Anal. 122 (1994), 247253.Google Scholar
[9]Lapointe, L. and Vinet, L., ‘Exact operator solution of the Calogero-Sutherland model’, Comm. Math. Phys. 178 (1996), 425452.CrossRefGoogle Scholar
[10]Opdam, E.M., ‘Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group’, Compositio Math. 85 (1993), 333373.Google Scholar
[11]Polychronakos, A.P., ‘Exchange operator formalism for integrable systems of particles’, Phys. Rev. Lett. 69 (1992), 703705.CrossRefGoogle ScholarPubMed
[12]Rosier, M., ‘Generalized Hermite polynomials and the heat equation for Dunkl operators’, Comm. Math. Phys. 192 (1998), 519542.Google Scholar
[13]Rösier, M., ‘Positivity of Dunkl's intertwining operator’, Duke Math. J. (to appear).Google Scholar
[14]Rosier, M. and Voit, M., ‘An uncertainty principle for Hankel transforms’, Proc. Amer. Math. Soc. 127 (1999), 183194.Google Scholar
[15]Roosenraad, C.T., Inequalities with orthogonal polynomials, thesis (Univ. of Wisconsin, 1969).Google Scholar