Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-08-04T11:22:37.671Z Has data issue: false hasContentIssue false

Approximation by Boolean sums of linear operators: Telyakovskiǐ-type estimates

Published online by Cambridge University Press:  17 April 2009

Jia-Ding Cao
Affiliation:
Department of Mathematics Fudan, University Shanghai Peoples, Republic of China
Heinz H. Gonska
Affiliation:
Department of Computer, Science European Business School, D-6227 Oestrich-Winkel, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present note we study the question: “Under which general conditions do certain Boolean sums of linear operators satisfy Telyakovskiǐ-type estimates?” It is shown, in particular, that any sequence of linear algebraic polynomial operators satisfying a Timan-type inequality can be modified appropriately so as to obtain the corresponding upper bound of the Telyakovskiǐ-type. Several examples are included.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Cao, Jia-Ding, ‘Generalizations of Timan's theorem, Lehnhoff's theorem and Teljakowskiǐ's theorem (Chinese)’, Kexue Tongbao 15 (1986), 11321135.Google Scholar
[2]Cao, Jia-Ding, ‘Generalizations of Timan's theorem, Lehnhoff's theorem and Teljakowskiǐ's theorem’, Schriftenreihe des Fachbereichs Mathematik SM-DU 106 (1986).Google Scholar
[3]Cao, Jia-Ding and Gonska, H.H., ‘Approximation by Boolean sums of positive linear operators III: Estimates for some numerical approximation schemes’, Numer. Funct. Anal. Optim. 10 (1989), 643672.CrossRefGoogle Scholar
[4]Cao, Jia-Ding and Gonska, H.H., ‘Pointwise estimates for modified positive Unear operators’, Portugal. Math. 46 (1989), 401430.Google Scholar
[5]Derrienic, M.M., ‘Sur l'approximation des fonctions intégrables sur [0, 1] par des polynômes de Bernstein modifiés’, J. Approx. Theory 31 (1981), 325343.CrossRefGoogle Scholar
[5]DeVore, R.A., The Approximation of Continuous Functions by Positive Linear Operators (Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
[7]DeVore, R.A., ‘Degree of approximation’, in Approximation Theory II: Proc. Int. Sympos. Austin, Editor G.G. Lorentz et al, pp. 117161 (Academic Press, New York, 1976).Google Scholar
[8]Freud, G. and Sharma, A., ‘Some good sequences of interpolatory polynomials’, Canad. J. Math. 26 (1974), 233246.CrossRefGoogle Scholar
[9]Freud, G. and Vértesi, P., ‘A new proof of A.F. Timan's approximation theorem’, Studia Sci. Math. Hungar. 2 (1967), 403414.Google Scholar
[10]Gonska, H.H., ‘On Pičugov-Lehnhoff operators’, Schriftenreihe des Fachbereichs Mathematik SM-DU 86 (1985).Google Scholar
[11]Gonska, H.H., ‘Modified Pičugov-Lehnhoffoperators’, in Approximation Theory V: Proc. Int. Sympos. College Station, Editor Chui, C.K. et al. , pp. 355358, 1986. (Acad. Press, New York).Google Scholar
[12]Gonska, H.H. and Meier, J., ‘Quantitative theorems on approximation by Bernstein-Stancu operators’, Calcolo 21 (1984), 317335.CrossRefGoogle Scholar
[13]Korovkin, P.P., Linear Operators and Approximation Theory (Delhi, Hindustan, 1960).Google Scholar
[14]Lehnhoff, H.G., ‘A simple proof of A.F. Timan's theorem’, J. Approx. Theory 38 (1983), 172176.CrossRefGoogle Scholar
[15]Lehnhoff, H.G., ‘A new proof of Teljakowskiǐ’s theorem’, J. Approx. Theory 38 (1983), 177181.CrossRefGoogle Scholar
[16]Lorentz, G.G., Bernstein Polynomials (University of Toronto Press, Toronto, 1953).Google Scholar
[17]Lorentz, G.G., ‘Query in ‘New and Unsolved Problems’’, in On Approximation Theory: Proc. Conference Oberwolfach, Editors Butzer, P.L. and Korevaar, J., pp. 179199 (Birkhäuser, Basel, 1972 (2nd ed.)).Google Scholar
[18]May, C.P., ‘A saturation theorem for modified Bernstein polynomials in LP-spaces’, SIAM J. Math. Anal. 10 (1979), 321330.CrossRefGoogle Scholar
[19]Mills, T.M. and Varma, A.K., ‘A new proof of A.F. Timan's approximation theorem’, Israel J. Math. 18 (1974), 3944.CrossRefGoogle Scholar
[20]Nagel, J., ‘Kantorovič operators of second order’, Monatsh. Math. 95 (1983), 3344.Google Scholar
[21]Pičugov, S.A., ‘Approximation of continuous functions on a segment by linear methods’, (Russian), Mat. Zametki 24 (1978), 343348.Google Scholar
[22]Popoviciu, T., ‘Über die Konvergenz von Folgen positiver linearer Operatoren’, An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 17 (1971), 123132.Google Scholar
[23]Saxena, R.B., ‘The approximation of continuous functions by interpolatory polynomials’, Proc. Maih. Inst. Bulgar. Akad. Sci. 12 (1970), 97105.Google Scholar
[24]Schurer, F., ‘On linear positive operators in approximation theory’, Dissertation (Delft University of Technology, Delft, The Netherlands, 1965).Google Scholar
[25]Telyakovskiǐ, S.A., ‘Two theorems on the approximation offunctions by algebraic polynomials’, (Russian), Mat. Sb. (N.S.) 70 (1966), 252265.Google Scholar
[26]Timan, A.F., ‘Strengthening of Jackson's theorem on best approximation of continuous functions given on a finite interval of the real axis’, (Russian), Dokl. Akad. Nauk SSSR 78 (1951), 1720.Google Scholar
[27]Timan, A.F., Theory of Approximation of Functions of a Real Variable (Macmillan, New York, 1963).Google Scholar
[28]Varma, A.K., ‘A new proof of A.F. Timan's approximation theorem II’, J. Approx. Theory 18 (1976), 5762.Google Scholar
[29]Varma, A.K. and Mills, T.M., ‘On the summability of Lagrange interpolation’, J. Approx. Theory 9 (1973), 349356.Google Scholar
[30]Vértesi, P. and Kis, O., ‘On a new interpolation process’, Ann. Univ. Sd. Budapest 10 (1967), 117128.Google Scholar