Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:00:01.540Z Has data issue: false hasContentIssue false

The centraliser of the injective tensor product

Published online by Cambridge University Press:  17 April 2009

Wend Werner
Affiliation:
Department of Mathematics, Universität – Gesamthochschule Paderborn, Fachbereich 17 Postfach 1621, Paderborn, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this note is to obtain an intrinsic product formula for the centraliser of the injective tensor product of a couple of Banach spaces, Z(). More precisely, we are going to prove that

Here, the spaces and depend only on X and Y, respectively, and Xk denotes the topological k-product.

A Counterexaple used to demonstrate that the k-product cannot beavoided serves as an answer to a question posed by W. Rueß and D. Werner concerning the behaviour of M-ideals on Y.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Alfsen, E. M., Compact convex sets and boundary integrals (Springer-Verlag, Berlin, Heidelberg, New York, 1971).CrossRefGoogle Scholar
[2]Alfsen, E. M. and Effros, E. G., ‘Structure in real Banach spaces. Part I and II‘, Ann. of Math. 96 (1972), 98173.CrossRefGoogle Scholar
[3]Behrends, E., ‘The centralizer of tensor products of Banach spaces (a function space representation)’, Pacific J. Math. 81 (1979), 291301.CrossRefGoogle Scholar
[4]Behrends, E., M-Structure and the Banach-Stone Theorem: Lecture Notes in Math. 736 (Springer-Verlag, Berlin, Heidelberg, New York, 1979).CrossRefGoogle Scholar
[5]Chu, C.-H., ‘On standard elements and tensor products of compact convex sets’, J. London Math. Soc. 14 (1976), 7178.CrossRefGoogle Scholar
[6]Dineen, S., Klimek, M., and Timoney, R.M., ‘Biholomorphic mappings and Banach function modules‘, J. Reine Angew. Math. 387 (1988), 122147.Google Scholar
[7]Dixmier, J., Les C-algèbres et leurs représentations, second edition (Gauthier-Villars, Paris, 1969).Google Scholar
[8]Engelking, R., General topology (Warszawa, 1977).Google Scholar
[0]Fell, J.M.G. and Doran, R.S., Representations of *-algebras, locally compact groups, and *-alebraic bundles I, II: Pure Appl. Math 125, 126 (Academic Press, New York, London, 1988).Google Scholar
[10]Gamelin, T. W., Uniform algebras (Prentice-Hall, Englewood Cliffs, 1969).Google Scholar
[11]Gierz, G., Bundles of topological vector spaces and their duality: Lecture Notes in Math. 955 (Springer-Verlag, Berlin, Heidelberg, New York, 1982).CrossRefGoogle Scholar
[12]Harmand, P., Werner, D., and Werner, W., ‘M-ideals in Banach spaces and Banach algebras’, (in preparation).Google Scholar
[13]Haydon, R. and Wassermann, S.., ‘A commutation result for tensor products of C*-algebras’, Bull. London Math. Soc. 5 (1973), 283287.CrossRefGoogle Scholar
[14]Kitchen, J.W. and Robbins, D.A., ‘Tensor products of Banach bundles’, Pacific J. Math. 94 (1981), 151–16.CrossRefGoogle Scholar
[15]Lacey, H.E., The isometric theory of classical Banach spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[16]Lima, Å. and Olsen, G., ‘Extreme points in duals of complex operator spaces’, Proc. Amer. Math. Soc. 94 (1985), 437440.CrossRefGoogle Scholar
[17]Rodríguez-Palacios, A. and Mun¯oz, A.R. Villena, ‘Centroid and extended centroid of JB-algebras’, (preprint 1989).Google Scholar
[18]Roy, N.M., ‘A characterization of square Banach spaces’, Israel J. Math. 17 (1974), 142148.CrossRefGoogle Scholar
[19]Ruess, W. and Stegall, Ch., ‘Extreme points in duals of operator spaces’, Math. Ann. 261 (1982), 535546.CrossRefGoogle Scholar
[20]Ruess, W. and Werner, D., ‘Structural properties of operator spaces’, Acta Univ. Carolin. - Math. Phys. 28 (1987), 127136.Google Scholar
[21]Uttersrud, U., ‘On M−ideals and the Alfsen-Effros structure topology’, Math. Scand. 43 (1978), 369381.CrossRefGoogle Scholar
[22]Vincent-Smith, G. F., ‘The centre of the tensor product of A(K)-spaces and C*-algebras’, Quart. J. Math. Oxford Ser. 2 28 (1977), 8791.CrossRefGoogle Scholar
[23]Werner, W., ‘Some results concerning the M-structure of operator spaces’, Math. Ann. 282 (1988), 545553.CrossRefGoogle Scholar
[24]Wickstead, A. W., ‘The centraliser of E ⊗λ F’, Pacific J. Math. 65 (1976), 563571.CrossRefGoogle Scholar