Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T16:58:50.119Z Has data issue: false hasContentIssue false

A dual characterisation of the Radon-Nikodym property

Published online by Cambridge University Press:  17 April 2009

M. Bachir
Affiliation:
Laboratoire de Mathématiques Pures, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France e-mail: bachir@math.u-bordeaux.fr
A. Daniilidis
Affiliation:
Laboratoire de Mathématiques Appliquées, CNRS ERS 2055, Université de Pau et des Pays de l'Adour, Avenue de l'Université, 64000 Pau, France e-mail: aris.daniilidis@univ-pau.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that a Banach space X has the Radon-Nikodym property if, and only if, every weak*-lower semicontinuous convex continuous function f of X* is Gâteaux differentiable at some point of its domain with derivative in the predual space x.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Asplund, E. and Rockafellar, R.T., ‘Gradients of convex functions’, Trans. Amer. Math. Soc. 139 (1969), 433467.CrossRefGoogle Scholar
[2]Bachir, M., ‘On generic differentiability and Banach-Stone's theorem’, (preprint 37p, University of Bordeaux, 1999), C. R. Acad. Sci. Paris 330 (2000), 687690.Google Scholar
[3]Bourgain, J., ‘La propriété de Radon-Nikodym’, Publ. Math. Univ. Pierre et Marie Curie 36 (1979).Google Scholar
(4)Bourgin, R., Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Mathematics 993 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).CrossRefGoogle Scholar
[5]Gollier, J., ‘The dual of a space with the Radon-Nikodym property’, Pacific J. Math. 64 (1976), 103106.Google Scholar
[6]Dontchev, A. and Zolezzi, T., Well-posed optimization problems, Lecture Notes in Mathematics 1543 (Springer-Verlag, Berlin, Heidelberg, New York, 1993).CrossRefGoogle Scholar
[7]Fabian, M. and Zizler, V., ‘An elementary approach to some questions in higher order smoothness in Banach spaces’, Extracta Math. (to appear).Google Scholar
[8]Giles, J., ‘Comparable differentiability characterizations of two classes of Banach spaces’, Bull. Austral. Math. Soc. 56 (1997), 263272.CrossRefGoogle Scholar
[9]Godefroy, G., ‘Propriété de lissité de certaines normesMath. Ann. 257 (1981), 185189.CrossRefGoogle Scholar
[10]Phelps, R., Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics 1364, (2nd ed.) (Springer-Verlag, Berlin, Heidelberg, New York, 1993).Google Scholar