Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T23:45:12.607Z Has data issue: false hasContentIssue false

Existence of optimal controls for a class of nonlinear distributed parameter systems

Published online by Cambridge University Press:  17 April 2009

Nikolaos S. Papageorgiou
Affiliation:
Florida Institute of Technology, Department of Applied Mathematics Melbourne PL 32901-6988, United States of America
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we examine a Lagrange optimal control problem driven by a nonlinear evolution equation involving a nonmonotone, state dependent perturbation term. For this problem we establish the existence of optimal admissible pairs. For the same system we also examine a time optimal control problem involving a moving target set. Finally we work out in detail an example of a strongly nonlinear parabolic distributed parameter system.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Ahmed, N., ‘Optimal control of a class of strongly nonlinear parabolic systems’, J. Math. Anal. Appl. 61 (1977), 188207.CrossRefGoogle Scholar
[2]Ahmed, N. and Teo, K., ‘Optimal control of systems governed by a class of nonlinear evolution equations in a reflexive Banach space’, J. Optim. Theory Appl. 25 (1978), 5781.CrossRefGoogle Scholar
[3]Ahmed, N. and Teo, K., Optimal control of distributed parameter systems (North Holland, New York, 1981).Google Scholar
[4]Avgerinos, E. and Papageorgiou, N.S., ‘An existence theorem for an optimal control problem in Banach spaces’, Bull. Austral. Math. Soc. 39 (1989), 239248.CrossRefGoogle Scholar
[5]Balder, E., ‘Necessary and sufficient conditions for L 1-strong-weak lower semicontinuity of integral functional’, Nonlinear Anal. 11 (1987), 13991404.CrossRefGoogle Scholar
[6]Barbu, V., Nonlinear semigroups and differential equations in Banach spaces (Noordhoff International Publishing, Leyden, The Netherlands, 1976).CrossRefGoogle Scholar
[7]Browder, F., ‘Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains’, Proc. Nat. Acad. Sci. 74 (1977), 26592661.CrossRefGoogle ScholarPubMed
[8]Cesari, L., ‘Existence of solutions and existence of optimal solutions’, in Mathematical theories of optimization: Lecture Notes in Math. 979, Editors Cecconi, J. and Zolezzi, T., pp. 88107 (Springer-Verlag, Berlin, Heidelberg, New York, 1983).CrossRefGoogle Scholar
[9]Flytzanis, E. and Papageorgiou, N.S., ‘On the existence of optimal solutions for a class of nonlinear infinite dimensional systems’, Differential Integral Equations (1990). (in press).CrossRefGoogle Scholar
[10]Hirano, N., ‘Nonlinear evolution equations with nonmonotone perturbations’, Nonlinear Anal. 13 (1989), 599609.CrossRefGoogle Scholar
[11]Joshi, M., ‘On the existence of optimal controls in Banach spaces’, Bull. Austral. Math. Soc. 27 (1983), 395401.CrossRefGoogle Scholar
[12]Lions, J.-L., ‘Optimisation pour certaines classes d'equations d'evolution nonlineaires’, Ann. Mat. Pura Appl. 72 (1966), 275294.CrossRefGoogle Scholar
[13]Lions, J.-L., Quelques methodes de resolution des problèmes aux limites non lineaires (Dunod, Paris, 1969).Google Scholar
[14]Nagy, E., ‘A theorem on compact embedding for functions with values in an infinite dimensional Hilbert space’, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 29 (1986), 243245.Google Scholar
[15]Papageorgiou, N.S., ‘Convergence theorems for Banach space valued integrable multifunctions’, Internal. J. Math. Math. Sci. 10 (1987), 433–42.CrossRefGoogle Scholar
[16]Pappas, G., ‘An approximation result for normal integrands and applications to relaxed control theory’, J. Math. Anal. Appl. 93 (1983), 132141.CrossRefGoogle Scholar
[17]Tanabe, H., Equations of evolution (Pitman, London, 1979).Google Scholar
[18]Vidyanagar, M., ‘On the existence of optimal control’, J. Optim. Theory Appl. 17 (1975), 273278.CrossRefGoogle Scholar