Published online by Cambridge University Press: 17 April 2009
This paper explores a five-lemma situation in the context of a free product of a family of groups with amalgamated subgroups (that is, a colimit of an appropriate diagram in the category of groups). In particular, for two families {Aα}, {Bα} of groups with amalgamated subgroups {Aαβ}, {Bαβ} and free products A, B we assume the existence of homomorphisms Aα → Bα whose restrictions Aαβ → Bαβ are isomorphisms and which induce an isomorphism A → B between the products. We show that the usual five-lemma conclusion is false, in that the morphisms Aα → Bα are in general neither monic nor epic. However, if all Bα → B are monic, Aα → Bα is always epic; and if Aα → A is monic, for all α, then Aα → Bα is an isomorphism.