Published online by Cambridge University Press: 17 April 2009
We give some conditions under which, for a given pair (d1, d2) of continuous pseudometrics respectively on X and X3, there exists a continuous semi-norm N on the free topological group F(X) such that N(x · y−1) = d1(x, y) and N(x · y · t−1 · z−1) ≥ d2((x, y), (z, t)) for all x, y, z, t ∈ X. The “extension” results are applied to characterise thin subsets of free topological groups and obtain some relationships between natural uniformities on X2 and those induced by the group uniformities *V, V* and *V* of F(X).