Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T12:02:16.206Z Has data issue: false hasContentIssue false

PROOF OF A CONJECTURE OF BANERJEE AND DASTIDAR ON ODD CRANK

Published online by Cambridge University Press:  13 January 2023

DAZHAO TANG*
Affiliation:
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, PR China
Rights & Permissions [Opens in a new window]

Abstract

Recently, when studying intricate connections between Ramanujan’s theta functions and a class of partition functions, Banerjee and Dastidar [‘Ramanujan’s theta functions and parity of parts and cranks of partitions’, Ann. Comb., to appear] studied some arithmetic properties for $c_o(n)$, the number of partitions of n with odd crank. They conjectured a congruence modulo $4$ satisfied by $c_o(n)$. We confirm the conjecture and evaluate $c_o(4n)$ modulo $8$ by dissecting some q-series into even powers. Moreover, we give a conjecture on the density of divisibility of odd cranks modulo 4, 8 and 16.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1 Introduction

A partition $\lambda$ of a nonnegative integer n is a finite weakly decreasing sequence of positive integers $\lambda _1\geq \lambda _2\geq \cdots \geq \lambda _r$ such that $\sum _{i=1}^r\lambda _i=n$ . The $\lambda _i$ for $1\leq i\leq r$ are called the parts of the partition $\lambda $ . Let $p(n)$ denote the number of partitions of n. In 1919, Ramanujan [Reference Ramanujan8] discovered three remarkable congruences enjoyed by $p(n)$ , namely,

(1.1) $$ \begin{align} p(5n+4) &\equiv0 \pmod{5}, \end{align} $$
(1.2) $$ \begin{align} p(7n+5) &\equiv0 \pmod{7}, \end{align} $$
(1.3) $$ \begin{align} p(11n+6) &\equiv0 \pmod{11}. \end{align} $$

In 1944, Dyson [Reference Dyson7] introduced the notion of the rank, and further conjectured that this partition statistic could provide a combinatorial interpretation for (1.1) and (1.2). Dyson’s conjecture was later confirmed by Atkin and Swinnerton-Dyer [Reference Atkin and Swinnerton-Dyer4] in 1954. Unfortunately, this partition statistic cannot interpret (1.3) combinatorially. Therefore, Dyson further conjectured that there exists another statistic, which he named the ‘crank’, providing a combinatorial interpretation of (1.3). This partition statistic was discovered by Andrews and Garvan [Reference Andrews and Garvan3] in 1988. For a partition $\lambda $ , let $l(\lambda )$ denote the largest part of $\lambda $ , let $\omega (\lambda )$ and $\mu (\lambda )$ denote the number of ones in $\lambda $ and the number of parts of $\lambda $ that are larger than $\omega (\lambda )$ , respectively. The crank is defined by

$$ \begin{align*} \textrm{crank}(\lambda)= \begin{cases} l(\lambda) \quad &\textrm{if }\omega(\lambda)=0,\\ \omega(\lambda)-\mu(\lambda) \quad &\textrm{if }\omega(\lambda)>0. \end{cases} \end{align*} $$

Let $c_o(n)$ denote the number of partitions of n with odd crank. The generating function of $c_o(n)$ is given by

$$ \begin{align*} \sum_{n=0}^\infty c_o(n)q^n=\dfrac{1}{2} {\bigg(\dfrac{1}{(q;q)_\infty}-\dfrac{(q;q)_\infty^3}{(q^2;q^2)_\infty^2}\bigg)}. \end{align*} $$

Throughout the rest of this paper, we always assume that q is a complex number such that $|q|<1$ and adopt the following customary notation:

$$ \begin{align*} (a;q)_\infty &:=\prod_{k=0}^\infty(1-aq^k),\\ (a_1,a_2,\ldots,a_m;q)_\infty &:=(a_1;q)_\infty(a_2;q)_\infty\cdots(a_m;q)_\infty. \end{align*} $$

Recently, Banerjee and Dastidar [Reference Banerjee and Dastidar5] considered some arithmetic properties of $c_o(n)$ . By means of q-series manipulations, Banerjee and Dastidar [Reference Banerjee and Dastidar5, (1.10)] proved that for any $n\geq 0$ ,

$$ \begin{align*} c_o(5n+4)\equiv0 \pmod{10}. \end{align*} $$

Based on computer experiments, they conjectured a congruence modulo $4$ satisfied by $c_o(n)$ .

Conjecture 1.1. We have $c_o(2n)\equiv 0 \pmod {4}$ for any $n\geq 0$ .

Banerjee and Dastidar [Reference Banerjee and Dastidar5] verified that Conjecture 1.1 holds for any $1\leq n\leq 2000$ . By using some q-series techniques, we not only confirm the above congruence modulo  $4$ , but also establish another congruence modulo $8$ .

Theorem 1.2. For any $n\geq 0$ ,

(1.4) $$ \begin{align} c_o(2n) &\equiv0 \pmod{4}, \end{align} $$
(1.5) $$ \begin{align} c_o(4n) &\equiv0 \pmod{8}. \end{align} $$

2 Proof of Theorem 1.2

To prove (1.4) and (1.5), we need the following three auxiliary identities.

Lemma 2.1 [Reference Andrews, Berndt, Chan, Kim and Malik2, Lemma 4.1]

We have

(2.1) $$ \begin{align} \dfrac{1}{(q;q)_\infty}=\dfrac{1}{(q^2;q^2)_\infty^2} ((-q^6,-q^{10},q^{16};q^{16})_\infty+q(-q^2,-q^{14},q^{16};q^{16})_\infty). \end{align} $$

Lemma 2.2 (Jacobi’s identity [Reference Berndt6, Theorem 1.3.9])

(2.2) $$ \begin{align} (q;q)_\infty^3=\sum_{n=0}^\infty(-1)^n(2n+1)q^{n(n+1)/2}. \end{align} $$

Lemma 2.3 (Jacobi’s triple product identity [Reference Andrews and Berndt1, Lemma 1.2.2])

(2.3) $$ \begin{align} \sum_{n=-\infty}^\infty a^{n(n+1)/2}b^{n(n-1)/2}=(-a,-b,ab;ab)_\infty,\quad|ab|<1. \end{align} $$

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2

Define the sequence $\{A(n)\}_{n\geq 0}$ by

(2.4) $$ \begin{align} \sum_{n=0}^\infty A(n)q^n=\dfrac{1}{(q;q)_\infty}-\dfrac{(q;q)_\infty^3}{(q^2;q^2)_\infty^2}. \end{align} $$

Therefore, (1.4) and (1.5) are equivalent respectively to

(2.5) $$ \begin{align} A(2n) &\equiv0 \pmod{8}, \end{align} $$

and

(2.6) $$ \begin{align} A(4n) &\equiv0 \pmod{16}. \end{align} $$

However, from (2.2),

$$ \begin{align*} (q;q)_\infty^3 &=\sum_{n=0}^\infty(-1)^n(2n+1)q^{n(n+1)/2}\\ &=\sum_{n=0}^\infty(-1)^{8n}(16n+1)q^{4n(8n+1)}+\sum_{n=0}^\infty(-1)^{8n+1}(16n+3)q^{(4n+1)(8n+1)}\\ &\quad+\sum_{n=0}^\infty(-1)^{8n+2}(16n+5)q^{(4n+1)(8n+3)}+\sum_{n=0}^\infty(-1)^{8n+3}(16n+7)q^{(4n+2)(8n+3)}\\ &\quad+\sum_{n=0}^\infty(-1)^{8n+4}(16n+9)q^{(4n+2)(8n+5)}+\sum_{n=0}^\infty(-1)^{8n+5}(16n+11)q^{(4n+3)(8n+5)}\\ &\quad+\sum_{n=0}^\infty(-1)^{8n+6}(16n+13)q^{(4n+3)(8n+7)}+\sum_{n=0}^\infty(-1)^{8n+7}(16n+15)q^{(4n+4)(8n+7)},\end{align*} $$

from which we further obtain that

(2.7) $$ \begin{align} (q;q)_\infty^3 &\equiv\sum_{n=0}^\infty q^{4n(8n+1)}-3\sum_{n=0}^\infty q^{(4n+1)(8n+1)}\notag\\ &\quad+5\sum_{n=0}^\infty q^{(4n+1)(8n+3)}-7\sum_{n=0}^\infty q^{(4n+2)(8n+3)} \nonumber \\&\quad-7\sum_{n=0}^\infty q^{(4n+2)(8n+5)}+5\sum_{n=0}^\infty q^{(4n+3)(8n+5)}\notag\\ &\quad-3\sum_{n=0}^\infty q^{(4n+3)(8n+7)}+\sum_{n=0}^\infty q^{(4n+4)(8n+7)} \pmod{16}. \end{align} $$

Replacing n by $-n-1$ in the last four infinite sums in (2.7),

(2.8) $$ \begin{align} \sum_{n=0}^\infty q^{(4n+2)(8n+5)} &=\sum_{n=-\infty}^{-1}q^{(4n+2)(8n+3)}, \end{align} $$
(2.9) $$ \begin{align} \sum_{n=0}^\infty q^{(4n+3)(8n+5)} &=\sum_{n=-\infty}^{-1}q^{(4n+1)(8n+3)}, \end{align} $$
(2.10) $$ \begin{align} \sum_{n=0}^\infty q^{(4n+3)(8n+7)} &=\sum_{n=-\infty}^{-1}q^{(4n+1)(8n+1)}, \end{align} $$
(2.11) $$ \begin{align} \kern-15pt\sum_{n=0}^\infty q^{(4n+4)(8n+7)} &=\sum_{n=-\infty}^{-1}q^{4n(8n+1)}. \end{align} $$

Substituting (2.8)–(2.11) into (2.9),

$$ \begin{align*} (q;q)_\infty^3 &\equiv\sum_{n=-\infty}^\infty q^{4n(8n+1)}-3\sum_{n=-\infty}^\infty q^{(4n+1)(8n+1)}\notag\\ &\quad+5\sum_{n=-\infty}^\infty q^{(4n+1)(8n+3)}-7\sum_{n=-\infty}^\infty q^{(4n+2)(8n+3)} \pmod{16}. \end{align*} $$

Thanks to (2.3),

(2.12) $$ \begin{align} (q;q)_\infty^3 &\equiv(-q^{28},-q^{36},q^{64};q^{64})_\infty-3q(-q^{20},-q^{44},q^{64};q^{64})_\infty\notag\\[4pt] &\quad+5q^3(-q^{12},-q^{52},q^{64};q^{64})_\infty-7q^6(-q^4,-q^{60},q^{64};q^{64})_\infty \pmod{16}. \end{align} $$

Substituting (2.1) and (2.12) into (2.4) yields

(2.13) $$ \begin{align} \sum_{n=0}^\infty A(n)q^n &\equiv\dfrac{1}{(q^2;q^2)_\infty^2} ((-q^6,-q^{10},q^{16};q^{16})_\infty+q(-q^2,-q^{14},q^{16};q^{16})_\infty)\notag\\ &\quad-\dfrac{1}{(q^2;q^2)_\infty^2}((-q^{28},-q^{36},q^{64};q^{64})_\infty-3q(-q^{20},-q^{44},q^{64};q^{64})_\infty\notag\\[4pt] &\qquad+5q^3(-q^{12},-q^{52},q^{64};q^{64})_\infty-7q^6(-q^4,-q^{60},q^{64};q^{64})_\infty) \pmod{16}.\end{align} $$

Taking all terms of the form $q^{2n}$ in (2.13), after simplification,

(2.14) $$ \begin{align} \sum_{n=0}^\infty A(2n)q^n &\equiv\dfrac{1}{(q;q)_\infty^2} ((-q^3,-q^5,q^8;q^8)_\infty-(-q^{14},-q^{18},q^{32};q^{32})_\infty\notag\\ &\quad+7q^3(-q^2,-q^{30},q^{32};q^{32})_\infty) \pmod{16}. \end{align} $$

According to (2.3),

(2.15) $$ \begin{align} (-q^3,-q^5,q^8;q^8)_\infty &=\sum_{n=-\infty}^\infty q^{4n^2+n}\notag\\ &=\sum_{n=-\infty}^\infty q^{4(2n)^2+2n}+\sum_{n=-\infty}^\infty q^{4(2n-1)^2+(2n-1)}\notag\\ &=\sum_{n=-\infty}^\infty q^{16n^2+2n}+\sum_{n=-\infty}^\infty q^{16n^2-14n+3}\notag\\ &=(-q^{14},-q^{18},q^{32};q^{32})_\infty+q^3(-q^2,-q^{30},q^{32};q^{32})_\infty, \end{align} $$

where we have used (2.3) in the last step. Combining (2.14) and (2.15) gives

(2.16) $$ \begin{align} \sum_{n=0}^\infty A(2n)q^n\equiv 8q^3\dfrac{(-q^2,-q^{30},q^{32};q^{32})_\infty}{(q;q)_\infty^2} \pmod{16}. \end{align} $$

The congruence (2.5) follows immediately from (2.16).

Moreover, from the congruence $(q;q)_\infty ^2\equiv (q^2;q^2)_\infty \pmod {2}$ ,

(2.17) $$ \begin{align} \sum_{n=0}^\infty A(2n)q^n\equiv8q^3\dfrac{(-q^2,-q^{30},q^{32};q^{32})_\infty}{(q^2;q^2)_\infty} \pmod{16}. \end{align} $$

The congruence (2.6) follows immediately from (2.17).

This completes the proof of Theorem 1.2.

3 Concluding remarks

We conclude this paper with two remarks.

First, the numerical evidence suggests the following conjecture.

Conjecture 3.1. We have

$$ \begin{align*} \lim_{n\rightarrow\infty}\dfrac{\#\{m|\:c_o(2m+1)\equiv0 \pmod{4},\;\;1\leq m\leq n\}}{n} &=\dfrac{1}{2},\\ \lim_{n\rightarrow\infty}\dfrac{\#\{m|\:c_o(2m)\equiv0 \pmod{8},\;\;1\leq m\leq n\}}{n} &=\dfrac{1}{4},\\ \lim_{n\rightarrow\infty}\dfrac{\#\{m|\:c_o(4m+2)\equiv0 \pmod{8},\;\;1\leq m\leq n\}}{n} &=\dfrac{1}{2},\\ \lim_{n\rightarrow\infty}\dfrac{\#\{m|\:c_o(4m)\equiv0 \pmod{16},\;\;1\leq m\leq n\}}{n} &=\dfrac{1}{2}. \end{align*} $$

Second, it would be interesting find a combinatorial proof of (1.4) and (1.5).

Acknowledgement

The author would like to acknowledge the anonymous referee for the careful reading and helpful suggestions that have improved the quality of the paper to a great extent.

Footnotes

This work was partially supported by the National Natural Science Foundation of China (No. 12201093), the Natural Science Foundation Project of Chongqing CSTB (No. CSTB2022NSCQ–MSX0387), the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN202200509) and the Doctoral start-up research grant (No. 21XLB038) of Chongqing Normal University.

References

Andrews, G. E. and Berndt, B. C., Ramanujan’s Lost Notebook. Part I (Springer, New York, 2005).10.1007/0-387-28124-XCrossRefGoogle Scholar
Andrews, G. E., Berndt, B. C., Chan, S. H., Kim, S. and Malik, A., ‘Four identities and third order mock theta functions’, Nagoya Math. J. 239 (2020), 132.10.1017/nmj.2018.35CrossRefGoogle Scholar
Andrews, G. E. and Garvan, F. G., ‘Dyson’s crank of a partition’, Bull. Amer. Math. Soc. (N.S.) 18(2) (1988), 167171.10.1090/S0273-0979-1988-15637-6CrossRefGoogle Scholar
Atkin, A. O. L. and Swinnerton-Dyer, P., ‘Some properties of partitions’, Proc. Lond. Math. Soc. (3) 4 (1954), 84106.10.1112/plms/s3-4.1.84CrossRefGoogle Scholar
Banerjee, K. and Dastidar, M. G., ‘Ramanujan’s theta functions and parity of parts and cranks of partitions’, Ann. Comb., to appear. Published online (25 October 2022).10.1007/s00026-022-00615-1CrossRefGoogle Scholar
Berndt, B. C., Number Theory in the Spirit of Ramanujan, Student Mathematical Library, 34 (American Mathematical Society, Providence, RI, 2006).10.1090/stml/034CrossRefGoogle Scholar
Dyson, F. J., ‘Some guesses in the theory of partitions’, Eureka (Cambridge) 8 (1944), 1015.Google Scholar
Ramanujan, S., ‘Congruence properties of partitions’, Proc. Lond. Math. Soc. (3) 19(2) (1919), 207210.Google Scholar