Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T16:13:21.418Z Has data issue: false hasContentIssue false

A remark on primes in arithmetic progressions

Published online by Cambridge University Press:  17 April 2009

Ronald Alter
Affiliation:
University of Kentucky, Lexington, Kentucky, USA.
Mark Villarino
Affiliation:
University of Kentucky, Lexington, Kentucky, USA.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By generalizing a technique of Landau, the authors prove that the excess of the number of primes of the form 10x ± 3 over the number of primes of the form 10x ± 1 is infinite.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1970

References

[1]Chebyshev, P.L., “Lettre de M. le professeur Tchébychev á M. Fuss, sur un noveau théorème relatif aux nombres premiers contenus dans les formes 4n+1 et 4n+3”. a) Bull, de la classe phys. -math. de l'Acad. Imp. des Sciences, St. Petersburg, 11 (1953), 208. b) Oeuvres, Tome I, 697–687. (Commissionaires Acad. Impér. Sci. St. Petersburg, 1899; reprint by Chelsea, New York, 1962).Google Scholar
[2]Hardy, G.H., A course in pure mathematics, 10th edition, (Cambridge University Press, Cambridge, 1952).Google Scholar
[3]Knapowskit, S. and Turán, P., “Über einige Fragen der vergleichenden Primzahlentheorie”, Abhandlungen aus Zahlentheorie und Analysis (zur Erinnerung an Edmund Landau (1877–1938)), herausgegeben von Paul Turán, (Deutsch. Verlag Wiss., Berlin, 1968).Google Scholar
[4]Landau, Edmund, “Über einen Satz von Tschebyschef”, Math. Ann. 61 (1905), 527550.CrossRefGoogle Scholar
[5]Landau, Edmund, Handbuch der Lehre von der Verteilung der Primzahlen, 2 Bände. 2nd ed. with an appendix by Bateman, Paul T.. (Chelsea Publishing Company, New York, 1953).Google Scholar
[6]Phragmén, E., “Sur le logarithme intégral et la fonction f(x) de Riemann”, Öfversigt af Kongl. Vetenskaps – Akademiens Förhandlingar, Stockholm, 48 (1891), 599616.Google Scholar