No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
The principal result is a representation theorem for relatively-distributive, relatively complemented hypolattices with zero, generalizing the Stone representation theorem for a Boolean lattice. It uses the small product of a family of Boolean lattices which are maximal sublattices of the hypolattice. The paper also characterizes the maximal sublattices when the hypolattice is coherent; and it gives several examples of hypolattices, including hypolattices of subgroups and of ideals by direct sum, and examples from relative convexity, relative closure, and cofinality.