Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T07:32:21.853Z Has data issue: false hasContentIssue false

Some inequalities for planar convex sets containing one lattice point

Published online by Cambridge University Press:  17 April 2009

M. A. Hernández Cifre
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, 30100–Murcia, Spain e-mail: mhcifre@fcu.um.es, salsegom@fcu.um.es
S. Segura Gomis
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, 30100–Murcia, Spain e-mail: mhcifre@fcu.um.es, salsegom@fcu.um.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain two inequalities relating the diameter and the (minimal) width with the area of a planar convex set containing exactly one point of the integer lattice in its interior. They are best possible. We then use these results to obtain some related inequalities.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Blaschke, W., Kreis und Kugel (Chelsea, New York, 1948).Google Scholar
[2]Bonnesen, T. and Fenchel, W., Theorie der Konvexen Körper (Springer, Berlin, 1934).Google Scholar
[3]Scott, P.R., ‘A lattice problem in the plane’, Mathematika 20 (1973), 247252.CrossRefGoogle Scholar
[4]Scott, P.R., ‘Area-Diameter relations for two-dimensional lattices’, Math. Mag. 47 (1974), 218221.CrossRefGoogle Scholar
[5]Scott, P.R., ‘A family of inequalities for convex sets’, Bull. Austral. Math. Soc. 20 (1979), 237245.CrossRefGoogle Scholar
[6]Scott, P.R., ‘Area, width and diameter of planar convex sets with lattice point constraints’, Indian J. Pure Appl. Math. 14 (1983), 444448.Google Scholar
[7]Scott, P.R., ‘On planar convex sets containing one lattice point’, Quart. J. Math. Oxford 36 (1985), 105111.CrossRefGoogle Scholar
[8]Scott, P.R. and Awyong, P.W., ‘Width-diameter relations for planar convex sets with lattice point constraints’, Bull. Austral. Math. Soc. 53 (1996), 469478.Google Scholar