Published online by Cambridge University Press: 24 August 2004
An ovoid of ${\rm PG}(3,q)$ can be defined as a set of $q^2+1$ points with the property that every three points span a plane, and at every point there is a unique tangent plane. In 2000, M. R. Brown proved that if an ovoid of ${\rm PG}(3,q)$, $q$ even, contains a conic, then the ovoid is an elliptic quadric. Generalising the definition of an ovoid to a set of $(n-1)$-spaces of ${\rm PG}(4n-1,q)$, J. A. Thas introduced the notion of pseudo-ovoids or eggs: a set of $q^{2n}+1$$(n-1)$-spaces in ${\rm PG}(4n-1,q)$, with the property that any three egg elements span a $(3n-1)$-space and at every egg element there is a unique tangent $(3n-1)$-space. In this paper, a proof is given that an egg in ${\rm PG}(4n-1,q)$, $q$ even, contains a pseudo-conic (that is, a pseudo-oval arising from a conic of ${\rm PG}(2,q^n)$) if and only if the egg is classical (that is, arising from an elliptic quadric in ${\rm PG}(3,q^n)$).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.