Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T19:46:22.795Z Has data issue: false hasContentIssue false

SET IDEALS WITH COMPLETE SYMMETRY GROUP AND PARTITION IDEALS

Published online by Cambridge University Press:  01 November 1999

VALERY MISHKIN
Affiliation:
Department of Mathematics, Kemerovo State University, Kemerovo 650043, Russia
Get access

Abstract

For a wide class of set ideals (including, for example, all uniform ideals), a criterion of completeness of their symmetry groups is provided in terms of ideal quotients (polars). We apply it to partition ideals, and derive the extended Sierpiński–Erdös duality principle. We demonstrate that if the measure and category ideals I0 and I1 on the real line ℝ are partition (or, equivalently, if just I0 is partition), then not only are they isomorphic via an involution, but they also have complete (and distinct) symmetry groups coinciding, respectively, with the symmetry groups of the polars I0 and I1. The measure and category ideals on ℝ (and in more general spaces) are partition (Oxtoby) ideals assuming Martin's Axiom. In this case their polars are, respectively, the ideals generated by c-Sierpiński and c-Lusin sets. It is well known that the isomorphism of the measure and category ideals is not provable in ZFC. We show that the isomorphism of their symmetry groups is likewise unprovable.

Type
NOTES AND PAPERS
Copyright
© The London Mathematical Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)