Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T12:09:30.184Z Has data issue: false hasContentIssue false

BIOSYSTEMATICS OF THE GENUS EUXOA (LEPIDOPTERA: NOCTUIDAE). XVIH. COMPARATIVE BIOLOGY AND EXPERIMENTAL TAXONOMY OF THE SIBLING SPECIES EUXOA RIDMGSIANA (GRT.) AND EUXOA MAIMES (SM.)

Published online by Cambridge University Press:  31 May 2012

J.R. Byers
Affiliation:
Agriculture Canada Research Station, Lethbridge, Alberta, CanadaT1J 4B1
D.L. Struble
Affiliation:
Agriculture Canada Research Station, Lethbridge, Alberta, CanadaT1J 4B1
J.D. Lafontaine
Affiliation:
Biosystematics Research Institute, Agriculture Canada, Ottawa, Ontario, CanadaK1A 0C6

Abstract

The species previously recognized as Euxoa ridingsiana (Grt.) is shown to be composed of a sympatric pair of sibling species, Euxoa ridingsiana (Grt.) and Euxoa maimes (Sm.), which in the laboratory will produce viable F1 hybrids but no F2. Results of F1 sib and backcrosses show that the F1 males are fertile and the F1 females are infertile. In mating-bias tests conducted in laboratory cages, 74% of matings were conspecific and 26% interspecific. Differences in the diel periodicities of mating, which are about 2 h out of phase, may account for the mating bias. The duration of development of E. ridingsiana in the laboratory and its seasonal flight period in the field are about 2 weeks in advance of that of E. maimes. However, there is considerable overlap of the flight periods and, with the tendency of females of both species to mate several times, it is unlikely that the difference in seasonal emergence is enough to effect reproductive isolation. It is evident that, under natural conditions, reproductive isolation can be maintained entirely by species-specific sex pheromones. This mechanism of reproductive isolation is, however, apparently ineffective when moths are confined in cages in the laboratory.

Biogeographic considerations suggest that the differences in life-cycle timing and mating periodicities might have been adaptations to adjust development and reproduction to prevailing ancestral environments. If the initial differentiation of the 2 species occurred in isolation and included at least an incipient shift in the pheromonal mate-recognition system, it is possible that upon reestablishment of contact between ancestral populations the differences in life-cycle timing and mating periodicities acting in concert could have effected substantial, albeit incomplete, reproductive isolation. Subsequent selection to reinforce assortative mating to preserve coadapted gene complexes could then have resulted in differentiation of discrete pheromonal systems and attainment of species status.

Résumé

On démontre que l'espèce auparavant reconnue comme Euxoa ridingsiana (Grt.) est en fait composée de 2 espèces jumelles, Euxoa ridingsiana (Grt.) et Euxoa maimes (Sm.), qui produisent des hybrides viables à la F1 mais pas à la F2. Les résultats du croisement des progénitures de la F1 et de rétrocroisements montrent que les mâles de la Fl sont fertiles et que les femelles de la F1 sont infertiles. Des testes de symétrie de l'accouplement dans des cages au laboratoire ont révélé 74% de croisements conspé-cifiques et 26% de croisements interspécifiques. Une différence dans la périodicité de l'accouplement, un décalage d'environ 2 h, est possiblement la cause du biais observé. La durée du développement de E. ridingsiana au laboratoire et sa période saisonnière de vol sur le terrain sont environ 2 semaines en avance sur celles de E. maimes. Cependant, il y a un chevauchement considérable des périodes de vol, et à cause de la tendance des femelles des 2 espèces à s'accoupler plusieurs fois, il semble que la différence dans leur émergence saisonnière n'est pas suffisante pour assurer l'isolement reproducteur. Il est clair qu'en conditions naturelles, l'isolement reproducteur peut être réalisé par des phéromones sexuelles spécifiques des espèces. Ce mécanisme serait appa-ramment inefficace lorsque les papillons sont gardés en cages au laboratoire.Certaines considérations biogéographiques suggèrent que les différences au niveau de la chronologie du cycle vital et de la périodicité de l'accouplement refléteraient desadaptations du développement et de la reproduction à des milieux ancestraux. Si la différenciation initiale des 2 espèces s'est produite isolément, après au moins un début de séparation de leurs phéromones de rapprochement des sexes, il est possible que lors du rétablissement du contact des populations ancestrales, les différences existantes aux niveaux de la chronologie du cycle vital et de la périodicité de l'accouplement aient conduit à un isolement reproducteur prononcé bien qu'incomplet. Une sélection subséquente pour l'assortiment de l'accouplement de façon à préserver les complexes de gènes coadaptés, a pu résulter par la suite en la différenciation de systèmes discrets de phéromones et l'atteinte du statut d'espèces distinctes.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayala, F.J. 1975. Genetic differentiation during the speciation process. Evol. Biol. 8: 178.Google Scholar
Bowden, S.R. 1976. Breeding experiments and taxonomy. Ent. Gaz. 27: 512.Google Scholar
Byers, J.R., and Hinks, C.F.. 1978. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XI. Mating discrimination between three closely related species of the declarata group. Can. J. Zool. 56: 19811987.CrossRefGoogle Scholar
Byers, J.R., and Lafontaine, J.D.. 1982. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XVII. Comparative biology and experimental taxonomy of four subspecies of Euxoa comosa. Can. Ent. 114: 551565.CrossRefGoogle Scholar
Byers, J.R., Underhill, E.W., Steck, W.F., Chisholm, M.D., and Teal, P.E.A.. 1981. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XV. Sex pheromone cross attractancy among the three closely related species of the declarata group. Can. Ent. 113: 235243.Google Scholar
Cockayne, E.A. 1940. Hybrids. Proc. Trans. South Lond. Ent. Nat. Hist. Soc. 1939–40: 6580.Google Scholar
Flint, H.M., and Merkle, J.R.. 1983. Pink bollworm (Lepidoptera: Gelechiidae): communication disruption by pheromone composition imbalance. J. econ. Ent. 76: 4046.Google Scholar
Haldane, J.B.S. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12: 101109.CrossRefGoogle Scholar
Hardwick, D.F. 1965. A synopsis of the ridingsiana group of the genus Euxoa (Lepidoptera: Noctuidae) with a description of a new species. Can. Ent. 97: 12211226.CrossRefGoogle Scholar
Hardwick, D.F. 1970. The genus Euxoa (Lepidoptera: Noctuidae) in North America. I. Subgenera Orosagrotis, Longivesica, Chorizagrotis, Pleonectopoda, and Crassivesica. Mem. ent. Soc. Can. 67. 177 pp.Google Scholar
Hedrick, P.W., and McDonald, J.F.. 1980. Regulatory gene adaptation: an evolutionary model. Heredity 45: 8397.Google Scholar
Hinks, C.F., and Byers, J.R.. 1976. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). V. Rearing procedures, and life cycles of 36 species. Can. Ent. 108: 13451357.CrossRefGoogle Scholar
Lafontaine, J.D. 1982. Biogeography of the genus Euxoa (Lepidoptera: Noctuidae), in North America. Can. Ent. 114: 153.CrossRefGoogle Scholar
Lafontaine, J.D. 1983. Euxoa Hbn. pp. 153–155 in Hodges, R. W. et al. (Ed.), Check List of the Lepidoptera of America North of Mexico. E.W. Classey Ltd., and The Wedge Entomological Foundation, London. 284 pp.Google Scholar
Lafontaine, J.D., and Byers, J.R.. 1982. A revision of the comosa group of the genus Euxoa Hbn. (Lepidoptera: Noctuidae), with descriptions of two new species. Can. Ent. 114: 575589.CrossRefGoogle Scholar
Lande, R. 1981. The minimum numbers of genes contributing to quantitative variation between and within populations. Genetics 99: 541553.CrossRefGoogle ScholarPubMed
Mayr, E. 1963. Animal species and evolution. Harvard University Press, Cambridge, MA.Google Scholar
Oliver, C.G. 1979. Genetic differentiation and hybrid viability within and between some Lepidoptera species. Am. Nat. 114: 681694.Google Scholar
Steck, W.F., Chisholm, M.D., Bailey, B.K., and Underhill, E.W.. 1979. Moth sex attractants found by systematic field testing of 3-component acetate-aldehyde candidate lures. Can. Ent. 111: 12631269.CrossRefGoogle Scholar
Struble, D.L. 1983. Pheromone traps for monitoring moth (Lepidoptera) abundances: evaluation of cone-orifice and omni-directional designs. Can. Ent. 115: 5965.CrossRefGoogle Scholar
Struble, D.L., and Byers, J.R.. 1985. Identification of sex-pheromone components of the sibling species Euxoa ridingsiana (Grt.) and Euxoa maimes (Sm.) (Lepidoptera: Noctuidae), and blends for their specific attraction. Can. Ent. 117: 495504.Google Scholar
Teal, P.E.A., and Byers, J.R.. 1980. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XIV. Effect of temperature on female calling behavior and temporal partitioning in three sibling species of the declarata group. Can. Ent. 112: 113117.CrossRefGoogle Scholar
Teal, P.E.A., Byers, J.R., and Philogene, B.J.R.. 1978. Differences in female calling behavior of three interfertile sibling species of Euxoa (Lepidoptera: Noctuidae). Ann. ent. Soc. Am. 71: 630634.Google Scholar
Underhill, E.W., Steck, W.F., Byers, J.R., and Chisholm, M.D.. 1981. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XVI. (Z)-5-decenyl acetate a sex attractant for three closely related species, Euxoa declarata, Euxoa campestris, and Euxoa rockburnei. Can. Ent. 113: 245249.CrossRefGoogle Scholar
Wasserman, M., and Koepfer, H.R.. 1977. Character displacement for sexual isolation between Drosophila mojavensis and Drosophila arizonensis. Evolution 31: 812823.CrossRefGoogle ScholarPubMed