Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:14:26.375Z Has data issue: false hasContentIssue false

EFFECTS OF BENZOYLPHENYLUREA INSECT GROWTH REGULATORS ON EGGS AND LARVAE OF THE SPOTTED TENTIFORM LEAFMINER PHYLLONORYCTER BLANCARDELLA (FABR.) (LEPIDOPTERA: GRACILLARIIDAE)

Published online by Cambridge University Press:  31 May 2012

D.B. Marshall
Affiliation:
Agriculture Canada Research Station, Vineland Station, Ontario, Canada L0R 2E0
D.J. Pree
Affiliation:
Agriculture Canada Research Station, Vineland Station, Ontario, Canada L0R 2E0
B.D. McGarvey
Affiliation:
Agriculture Canada Research Station, Vineland Station, Ontario, Canada L0R 2E0

Abstract

Three benzoylphenylurea insecticides, diflubenzuron, triflumuron, and teflubenzuron, were toxic when applied to eggs of Phyllonorycter blancardella (Fabr.) 0–2 and 4–6 days post-oviposition. Most treated eggs hatched but larvae died in the early instars. High larval mortalities also occurred when treatments were applied to foliage prior to oviposition. Treatments applied to larvae, especially older larvae, were less toxic than those applied to eggs. In the field, control was similar whether insecticides were applied during egg deposition, first hatch of eggs, or against early-instar larvae. Applications during egg deposition are suggested as optimal for control. Control of spotted tentiform leafminer with insect growth regulators was equivalent to that obtained with deltamethrin or methomyl.

Residues of diflubenzuron and triflumuron, applied pre-bloom, persisted until leaf drop 19 weeks later. Residues of teflubenzuron persisted for 9 weeks. Populations of spotted tentiform leafminer were suppressed throughout the season and residues of all insect growth regulators except teflubenzuron applied in May were toxic to larvae into October.

Résumé

Trois insecticides benzoylphénylurée, le diflubenzuron, le triflumuron et le téflubenzuron, ont exercé un effet toxique sur des oeufs de Phyllonorycter blancardella (Fabr.) lorsqu’ils ont été appliqués 0–2 et 4–6 jours après l’oviposition. La plupart des oeufs ont éclos, mais les larves ont péri au début du stade larvaire. Les mortalités larvaires ont aussi été très nombreuses lorsque les insecticides ont été appliqués au feuillage avant l’oviposition. Les traitements appliqués contre les larves, en particulier les plus âgées, ont été moins toxiques que ceux qui ont engagé des oeufs. Sur le terrain, le degré de lutte a été le même que les insecticides aient été répandus durant la ponte, la première éclosion des oeufs ou contre les très jeunes larves. Les résultats laissent croire que le meilleur moment d’application serait la période de ponte. Le degré de destruction de la mineuse marbrée par des régulateurs de croissance d’insectes a été équivalent à celui que produit la deltaméthrine ou le méthomyl.

Les résidus de diflubenzuron et de triflumuron, appliqués en pré-floraison, persistent jusqu’à la chute des feuilles, 19 semaines plus tard. Les résidus de téflubenzuron persistent pendant 9 semaines. Les populations de mineuse marbrée ont été supprimées pendant toute la campagne, et les résidus de tous les régulateurs de croissance d’insectes, abstraction faite du téflubenzuron appliqué en mai, étaient toxiques pour les larves en octobre.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, D.J., and Carter, K.J. 1986. Further studies of the deposition and persistence of binapacryl, bupirimate and diflubenzuron on apple foliage and fruit. Pestic. Sci. 17: 7478.CrossRefGoogle Scholar
Austin, D.J., and Hall, K.J.. 1981. A method of analysis for the determination of binapacryl, bupirimate and diflubenzuron on apple foliage and fruit, and its application to persistence studies. Pestic. Sci. 12: 495502.CrossRefGoogle Scholar
Broadbent, A.B., and Pree, D.J.. 1984. Effects of diflubenzuron and Bay SIR 8514 on beneficial insect associated with peach. Environ. Ent. 13: 133136.CrossRefGoogle Scholar
Brown, T.M., DeVries, D.H., and Brown, A.W.A.. 1978. Induction of resistance to insect growth regulators. J. econ. Ent. 71: 223229.CrossRefGoogle Scholar
Bull, D.L., and Ivie, G.W.. 1978. Fate of diflubenzuron in cotton, soil, and rotational crops. J. Agric. Food Chem. 26: 517520.CrossRefGoogle Scholar
Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11: 142.CrossRefGoogle Scholar
Georghiou, G.P. 1972. The evolution of resistance to pesticides. Annu. Rev. Ecol. Syst. 3: 133168.CrossRefGoogle Scholar
Johnson, E.F., Laing, J.E., and Trottier, R.. 1976. The seasonal occurrence of Lithocolletis blancardella (Gracillariidae), and its major natural enemies in Ontario apple orchards. Proc. ent. Soc. Ont. 107: 3146.Google Scholar
Kremer, F.W. 1963. Major leafminer species occurring in the South Tyrolean fruit farming region and their control. Phlanzenshutz-Nachr. 16: 116.Google Scholar
Marshall, D.B., and Pree, D.J.. 1986. Effects of pyrethroid insecticides on eggs and larvae of resistant and susceptible populations of spotted tentiform leafminer. Can. Ent. 118: 11231130.CrossRefGoogle Scholar
Metcalf, R.L., Lu, P-Y., and Bowlus, S.. 1975. Degradation and fate of 1-(2,6-difluorobenzoyl)-3-(4-chlorophenyl) urea. J. Agric. Food Chem. 23: 359364.CrossRefGoogle Scholar
Moffitt, H.R., Mantey, K.D., and Tamaki, G.. 1984. Effects of chitin-synthesis inhibitors on egg hatch and subsequent larval entry of the codling moth, Cydia pomonella. Can. Ent. 116: 10571062.CrossRefGoogle Scholar
Mulder, R., and Gijswijt, M.J.. 1973. The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition. Pestic. Sci. 4: 737745.CrossRefGoogle Scholar
Nigg, H.N., Cannizzaro, R.D., and Stamper, J.H.. 1986. Diflubenzuron surface residues in Florida citrus. Bull. Environ. Contam. Toxicol. 36: 833838.CrossRefGoogle ScholarPubMed
Nimmo, W.B., deWilde, P.C., and Verloop, A.. 1984. The degradation of diflubenzuron and its chief metabolites in soils. Part I. Hydrolytic cleavage of diflubenzuron. Pestic. Sci. 15: 574585.CrossRefGoogle Scholar
Pottinger, R.P., and LeRoux, E.J.. 1971. The biology and dynamics of Lithocolletis blancardella (Lepidoptera: Gracillariidae) on apple in Quebec. Mem. ent. Soc. Can. 77. 437 pp.Google Scholar
Pree, D.J., Hagley, E.A.C., Simpson, C.M., and Hikichi, A.. 1980. Resistance of the spotted tentiform leafminer Phyllonorycter blancardella to organophosphorous insecticides in southern Ontario. Can. Ent. 112: 469474.CrossRefGoogle Scholar
Pree, D.J., Marshall, D.B., and Archibald, D.E.. 1986. Resistance to pyrethroid insecticide in the spotted tentiform leafminer Phyllonorycter blancardella (Lepidoptera: Gracillaridae) in southern Ontario. J. econ. Ent. 79: 318322.CrossRefGoogle Scholar
Roberts, W.P., and Hagley, E.A.C.. 1986. Codling Moth. Pest Management Program for Apple Series. OMAF 86–037. 2 pp.Google Scholar
Schaefer, C.H., and Dupras, E.F. Jr. 1979. Factors affecting the stability of SIR-8514 (2-chloro-N-[[[4-(trifluoromethoxy)phenyl]amino]carbonyl] benzamide) under laboratory and field conditions. J. Agric. Food Chem. 27: 10311034.CrossRefGoogle Scholar
Taylor, C.E., and Georghiou, G.P.. 1982. Influence of pesticide persistence in evolution of resistance. Environ. Ent. 11: 746750.CrossRefGoogle Scholar
Trimble, R.M. 1983. Diapause termination and the thermal requirements for postdiapause development in six Ontario populations of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae). Can. Ent. 115: 387392.CrossRefGoogle Scholar
Walker, A.L., and Wood, R.J.. 1986. Laboratory selected resistance to diflubenzuron in larvae of Aedes aegypti. Pestic. Sci. 17: 495502.CrossRefGoogle Scholar