Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:15:21.880Z Has data issue: false hasContentIssue false

Floral resource use and interactions between Apis mellifera and native bees in cucurbit crops in Yucatán, México

Published online by Cambridge University Press:  02 April 2012

Miguel Angel Pinkus-Rendon
Affiliation:
Departamento de Ecología, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 4–116, Col. Itzimná, 97100 Mérida, Yucatán, México
Víctor Parra-Tabla
Affiliation:
Departamento de Ecología, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 4–116, Col. Itzimná, 97100 Mérida, Yucatán, México
Virginia Meléndez-Ramírez*
Affiliation:
Departamento de Zoología, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 4-116, Col. Itzimná, 97100 Mérida, Yucatán, México
*
1Corresponding author (e-mail: virmelen@tunku.uady.mx).

Abstract

Despite the importance of native pollinators in agricultural systems, little is known about the potential competitive interactions among them or the way they exploit crops' floral resources. This study determines the temporal use of floral resources by, and interspecific interactions between, native bees and Apis mellifera L. (Hymenoptera: Apidae) in experimental plots of squash, Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir. (Cucurbitaceae), and watermelon, Citrullus lanatus (Thunb.) (Cucurbitaceae). General and specific niche overlap analyses were done to determine whether temporally differential use of floral resources occurred. Direct displacement interactions at the floral level were quantified. The species with the greatest abundances were Peponapis limitaris Cockerell (Apidae), Partamona bilineata Say (Apidae), and A. mellifera. Overall, the niche overlap analyses in both crops suggested that floral resources are not used simultaneously by different bee species. Winner events during aggressive encounters suggested a hierarchy among bee species, with A. mellifera being one of the species with more winner encounters in both crops. It is suggested that those deciding whether or not to introduce A. mellifera into crops should consider whether the abundance of native bee species is sufficient to ensure efficient fruit production.

Résumé

Malgré l'importance des pollinisateurs indigènes dans les systèmes agricoles, on connaît peu de choses sur la manière dont ils exploitent les ressources florales des cultures et sur les interactions compétitives qui peuvent s'établir entre eux. Notre étude détermine l'utilisation temporelle des ressources florales par les abeilles indigènes et par Apis mellifera L. (Hymenoptera: Apidae), ainsi que les interactions interspécifiques entre elles, dans des parcelles expérimentales de culture de courges, Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir. (Cucurbitaceae), et de pastèques, Citrullus lanatus (Thunb.) (Cucurbitaceae). Des analyses générales et spécifiques de chevauchement de niches ont servi à déterminer s'il y a des différences temporelles d'utilisation des ressources florales. Nous avons dénombré les interactions de déplacement direct au niveau des fleurs. Les espèces les plus abondantes sont Peponapis limitaris Cockerell (Apidae), Partamona bilineata Say (Apidae) et A. mellifera. Dans leur ensemble, les analyses de chevauchement de niches dans les deux types de cultures indiquent que les ressources florales ne sont pas utilisées simultanément par les différentes espèces d'abeilles. L'identité des gagnants lors des épisodes de rencontres agressives laisse croire qu'il existe une hiérarchie au sein des espèces d'abeilles et qu'A. mellifera est l'une des espèces qui gagne plus souvent que les autres lors de ces rencontres dans les deux types de cultures. Nous suggérons qu'avant de décider d'introduire ou non A. mellifera dans les cultures, on devrait déterminer si l'abondance des espèces indigènes d'abeilles est suffisante pour assurer une production efficace de fruits.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aizen, M., and Feinsinger, P. 1994. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentina “Chaco Serrano”. Ecological Applications, 4: 378392.CrossRefGoogle Scholar
Bullock, S.H. 1995. Plant reproduction in neotropical dry forests. In Seasonally dry tropical forests. Edited by Bullock, S.H., Mooney, H.A., and Medina, E.. Cambridge University Press, New York. pp. 277296.CrossRefGoogle Scholar
Cane, J.H., and Payne, J.A. 1993. Regional, annual, and seasonal variation in pollinator guilds: intrinsic traits of bees (Hymenoptera: Apoidea) underlie their patterns of abundance at Vaccinium ashei (Ericaceae). Annals of the Entomological Society of America, 86: 577588.CrossRefGoogle Scholar
Canto-Aguilar, A., and Parra-Tabla, V. 2000. Importance of conserving alternative pollinators: assessing the pollination efficiency of the squash bee, Peponapis limitaris in Cucurbita moschata (Cucurbitaceae). Journal of Insect Conservation, 4: 201208.CrossRefGoogle Scholar
Crawley, M.J. 1993. GLIM for ecologists. Blackwell Scientific Publications, Oxford.Google Scholar
Feinsinger, P., Spears, E., and Poole, R. 1981. A simple measure of niche breadth. Ecology, 62: 2732.Google Scholar
Flores, J.S. 1990. The flowering periods of Leguminosae in the Yucatán Peninsula in relation to honey flows. Journal of Apicultural Research, 29(2): 8288.Google Scholar
Flores, J.S., and Espejel, C.I. 1994. Tipos de vegetación de la Península de Yucatán. Etnoflora Yucatánense, 3: 1135.Google Scholar
Francis, B., Green, M., and Payne, C. 1993. GLIM 4: the statistical system for generalized linear interactive modelling. Royal Statistical Society, Oxford Science Publications, London.Google Scholar
Free, J.B. 1993. Insect pollination of crops. 2nd ed. Academic Press, London.Google Scholar
Freitas, B.M., and Paxton, R.J. 1998. A comparison of two pollinators: the introduced honey bee (Apis mellifera) and an indigenous bee (Centris tarsata) on cashew (Anacardium occidentalis) in its native range of NE Brazil. Journal of Applied Ecology, 35: 109121.CrossRefGoogle Scholar
Hurd, P.D., Linsley, E.G., and Whitaker, T.W. 1971. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution, 25: 218234.Google ScholarPubMed
Kevan, P.G. 1991. Pollination: keystone process in sustainable global productivity. Acta Horticulturae, 288: 103110.CrossRefGoogle Scholar
Kevan, P.G., and Baker, H.G. 1983. Insects as flower visitors and pollinators. Annual Review of Entomology, 28: 407453.CrossRefGoogle Scholar
Kevan, P.G., Clark, A.E., and Thomas, G.V. 1990. Insect pollinators and sustainable agriculture. American Journal of Alternative Agriculture, 5: 1322.CrossRefGoogle Scholar
LaSalle, J., and Gauld, I.D. 1993. Hymenoptera: their diversity and their impact on the diversity of other organisms. In Hymenoptera and biodiversity. Edited by LaSalle, J. and Gauld, I.D.. CAB International, Wallingford, United Kingdom. pp. 126.Google Scholar
Lira, S.R. 1995. Estudios taxonómicos y ecogeográficos de las Cucurbitaceae latinoamericanas de importancia económica. Instituto de Biología, Universidad Nacional Autónoma de México.Google Scholar
Ludwig, A.J., and Reynolds, J.F. 1988. Statistical ecology: a primer on methods and computing. Wiley-Interscience, New York.Google Scholar
McGregor, S.E. 1976. Insect pollination of cultivated crop plants. US Department of Agriculture, Agriculture Handbook No. 46.Google Scholar
Meléndez, R.V. 1997. Polinización y biodiversidad de abejas nativas asociadas a cultivos hortícolas en el estado de Yucatán, México. M.Sc. thesis, Universidad Autónoma de Yucatán, México.Google Scholar
Meléndez-Ramírez, V., Parra-Tabla, V., Echazarreta, C.M., and Magaña-Rueda, R.S. 2000. Use of native bees and honey bees in horticultural crops of Cucurbita moschata in Yucatán, México. In Proceedings of the 6th IBRA Conference on Tropical Bees: Management and Diversity, 13–19 August 1996, San Jose, Costa Rica. Edited by Munn, P.. International Bee Research Association, Cardiff, United Kingdom. pp. 6570.Google Scholar
Meléndez-Ramírez, V., Magaña- Rueda, S., Parra-Tabla, V., Ayala, B.R., and Navarro, G.J. 2002. Diversity of native bee visitors of cucurbit crops (Cucurbitaceae) in Yucatán, México. Journal of Insect Conservation, 6: 135147.CrossRefGoogle Scholar
Meléndez-Ramírez, V., Parra-Tabla, V., Kevan, P.G., Ramírez-Morillo, I., Harries, H., Fernández-Barrera, M., and Zizumbo-Villarreal, D. 2004. Mixed mating strategies and pollination by insects and wind in coconut palm (Cocos nucifera. L. (Arecaceae)): importance in production and selection. Agricultural and Forest Entomology, 6: 155163.CrossRefGoogle Scholar
Menezes Pedro, S.R., and Camargo, J.M.F. 1991. Interactions on floral resources between the Africanized honey bee Apis mellifera L. and the native bee community (Hymenoptera: Apoidea) in a natural “Cerrado” ecosystem in southeast Brazil. Apidologie, 22: 397415.CrossRefGoogle Scholar
Osorio-Berinstain, M., Domínguez, C., Eguiarte, L., and Benrey, B. 1997. Pollination efficiency of native and invading Africanized bees in the tropical dry forest annual plant, Kallstroemia grandiflora Torr. ex Gray. Apidologie, 28: 1116.CrossRefGoogle Scholar
Pinkus, R.M. 1998. Horario de uso y competencia por recursos florales entre la abeja introducida Apis mellifera L. y abejas nativas en cultivos de Cucurbitaceae en X'matkuil, Yucatán, México. B.Sc. thesis, Universidad Autónoma de Yucatán, México.Google Scholar
Quezada-Euán, J., and May-Itza, W. 1996. Características morfométricas, poblacionales y parasitosis de colonias silvestres de Apis mellifera (Hymenoptera: Apidae) en Yucatán, México. Folia Entomologica Mexicana, 97: 119.Google Scholar
Roubik, D.W. 1981. Comparative foraging behavior of Apis mellifera and Trigona corvina (Hymenoptera: Apidae) on Baltimora recta (Compositae). Revista de Biologia Tropical, 29: 177183.Google Scholar
Roubik, D.W. 1982. Ecological impact of Africanized honeybees on native neotropical pollinators. In Social insects in the tropics. Vol. 1. Edited by Jaisson, P.. Université Paris-Nord, Paris. pp. 233247.Google Scholar
Roubik, D.W. 1983. Experimental community studies: time series test of competition between african and neotropical bees. Ecology, 64: 971978.CrossRefGoogle Scholar
Roubik, D.W. 1989. Ecology and natural history of tropical bees. University Press, Cambridge.CrossRefGoogle Scholar
Roubik, D.W. 1995. Pollination of cultivated plants in the tropics. FAO (Food and Agriculture Organization of the United Nations) Agricultural Services Bulletin 118.Google Scholar
Roubik, D.W., and Wolda, H. 2001. Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Population Ecology, 43: 5362.CrossRefGoogle Scholar
Roubik, D.W., Moreno, E., Vergara, C., and Wittmann, D. 1986. Sporadic food competition with the African honey bee: projected impact on neotropical social bees. Journal of Tropical Ecology, 2: 97111.Google Scholar
Shrivastava, U. 1990. Insect pollination in some cucurbits. Acta Horticulturae, 288: 445451.Google Scholar
Steffan-Dewenter, I., and Tscharntke, T. 2000. Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecología, 122: 288296.CrossRefGoogle ScholarPubMed
Sudgen, E.A., Thorp, R., and Buchmann, S. 1996. Honey bee – native bee competition: focal point for environmental change and apicultural response in Australia. Bee World, 77: 2644.Google Scholar
Tepedino, V.J. 1981. The pollination efficiency of the squash bee (Peponapis pruinosa) and the honey bee (Apis mellifera) on summer squash (Cucurbita pepo). Journal of the Kansas Entomological Society, 54: 359377.Google Scholar
Torchio, P.F. 1987. Use of non-honey bee species as pollinators of crops. Proceedings of the Entomological Society of Ontario, 118: 111124.Google Scholar
Willis, D.S., and Kevan, P.G. 1995. Foraging dynamics of Peponapis pruinosa (Hymenoptera: Anthophoridae) on pumpkin (Cucurbita pepo) in southern Ontario. The Canadian Entomologist, 127: 167175.CrossRefGoogle Scholar