Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:56:09.588Z Has data issue: false hasContentIssue false

Habitat and estimated density of Magicicada septendecula (Hemiptera: Cicadidae), a 17-year periodical cicada newly discovered in Connecticut, United States of America

Published online by Cambridge University Press:  26 June 2014

Chris T. Maier*
Affiliation:
Department of Entomology, Connecticut Agricultural Experiment Station, 123 Huntington Street, P.O. Box 1106, New Haven, Connecticut 06504-1106, United States of America
*
1Corresponding author (e-mail: chris.maier@ct.gov)

Abstract

Periodical cicadas in the genus Magicicada Davis (Hemiptera: Cicadidae) of brood II emerged in the eastern United States of America in 2013. In Connecticut, only Magicicada septendecim (Linnaeus) had been recorded until this emergence when Magicicada septendecula Alexander and Moore was found on Totoket Mountain in North Branford, Connecticut, United States of America. This discovery represented the northeastern-most record of this species. In two 0.25-ha plots where M. septendecula and M. septendecim emerged and chorused, species of Carya Nuttall (Juglandaceae) comprised 59.9–63.7% of the total basal area, with Carya glabra (Miller) Sweet, accounting for 43.9–60.0%. In one plot, 31.6% of the total basal area was Fraxinus americana Linnaeus (Oleaceae). By using the proportion of exuviae of M. septendecula (hind tibial length<6.3 mm) and M. septendecim (length ⩾ 6.3 mm) near trees and the mean number of emergence holes per 0.25-m2 quadrat (1.88), it was estimated that 1487 M. septendecula and 17 313 M. septendecim emerged in one 0.25-ha plot. Mean tibial length of M. septendecula was significantly smaller in males (5.53 mm) than females (5.99 mm), and the sex ratio did not depart significantly from 1:1. Magicicada septendecula may be threatened by the decline of F. americana and Juglans cinerea Linnaeus (Juglandaceae), the first a known host and the second a suspected host.

Type
Behaviour & Ecology
Copyright
© Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Keith Summerville

References

Alexander, R.D. and Moore, T.E. 1962. The evolutionary relationships of 17- and 13-year cicadas, and three new species (Homoptera: Cicadidae: Magicicada). Miscellaneous Publications of the Museum of Zoology, University of Michigan, 121: 159.Google Scholar
Anderson, R.L. and LaMadeleine, L.A. 1978. The distribution of butternut decline in the eastern United States. United States Department of Agriculture Forest Service, Northeastern Area State and Private Forestry, Forest Insect and Disease Management Survey Report, S-3–78: 1–5.Google Scholar
Davis, W.T. 1924. The seventeen-year cicada on Long Island with particular reference to its appearance in 1923. Bulletin of the Brooklyn Entomological Society, 19: 182184.Google Scholar
Dybas, H.S. and Lloyd, M. 1962. Isolation by habitat in two synchronized species of periodical cicadas (Homoptera: Cicadidae: Magicicada). Ecology, 43: 444459.Google Scholar
Dybas, H.S. and Lloyd, M. 1974. The habitats of 17-year periodical cicadas (Homoptera: Cicadidae: Magicicada spp.). Ecological Monographs, 44: 279324.Google Scholar
Graves, A.H. 1923. The melanconis disease of the butternut (Juglans cinerea L.). Phytopathology, 13: 411435.Google Scholar
Kalisz, P.J. 1994. Spatial and temporal patterns of emergence of periodical cicadas (Homoptera: Cicadidae) in a mountainous forest region. Transactions of the Kentucky Academy of Science, 55: 118123.Google Scholar
Karban, R. 1984. Opposite density effects of nymphal and adult mortality for periodical cicadas. Ecology, 65: 16561661.CrossRefGoogle Scholar
Knight, K.S., Brown, J.P., and Long, R.P. 2013. Factors affecting the survival of ash (Fraxinus spp.) trees infested by emerald ash borer (Agrilus planipennis). Biological Invasions, 15: 371383.Google Scholar
Leonard, D.E. 1964. Biology and ecology of Magicicada septendecim (L.) (Hemiptera: Cicadidae). Journal of the New York Entomological Society, 77: 1923.Google Scholar
Lloyd, M. and White, J. 1976. On the oviposition habits of 13-yr vs 17-yr periodical cicadas of the same species. Journal of the New York Entomological Society, 84: 148155.Google Scholar
Lloyd, M. and White, J. 1983. Why is one of the periodical cicadas (Magicicada septendecula) a comparatively rare species? Ecological Entomology, 8: 293303.CrossRefGoogle Scholar
Lunt, H.A., Swanson, C.L.W., and Jacobson, H.G.M. 1950. The Morgan soil testing system. Connecticut Agricultural Experiment Station (New Haven), Bulletin, 541: 160.Google Scholar
Maier, C.T. 1980. A mole’s-eye view of seventeen-year periodical cicada nymphs, Magicicada septendecim (Hemiptera: Homoptera: Cicadidae). Annals of the Entomological Society of America, 73: 147152.Google Scholar
Maier, C.T. 1982a. Observations on the seventeen-year periodical cicada, Magicicada septendecim (Hemiptera: Homoptera: Cicadidae). Annals of the Entomological Society of America, 75: 1423.Google Scholar
Maier, C.T. 1982b. Abundance and distribution of the seventeen-year periodical cicada, Magicicada septendecim (Linnaeus) (Hemiptera: Cicadidae – brood II), in Connecticut. Proceedings of the Entomological Society of Washington, 84: 430439.Google Scholar
Maier, C.T. 1985. Brood VI of 17-year periodical cicadas, Magicicada spp. (Hemiptera: Cicadidae): new evidence from Connecticut, the hypothetical 4-year deceleration, and the status of the brood. Journal of the New York Entomological Society, 93: 10191026.Google Scholar
Manter, J. 1974. Brood XI of the periodical cicada seems doomed. In 25th anniversary memoirs, Connecticut Entomological Society. Edited by R.L. Beard. The Connecticut Entomological Society, New Haven, Connecticut, United States of America. Pp. 99100.Google Scholar
Marlatt, C.L. 1907. The periodical cicada. United States Department of Agriculture, Bureau of Entomology, Bulletin, 71: 1181.Google Scholar
Reynolds, C.A. 1979. Soil survey of New Haven County, Connecticut. United States Department of Agriculture, Soil Conservation Service; Connecticut Agricultural Experiment Station; and Storrs Agricultural Experiment Station. United States Government Printing Office, Washington, District of Columbia, United States of America.Google Scholar
Shannon, C.E. and Weaver, W. 1963. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois, United States of America.Google Scholar
Simon, C. 1979. Brood II of the 17-year periodical cicada on Staten Island: timing and distribution. Proceedings of the Staten Island Institute of Arts and Sciences, 30: 3546.Google Scholar
Simon, C. and Lloyd, M. 1982. Disjunct synchronic populations of 17-year periodical cicadas: relicts or evidence of polyphyly? Journal of the New York Entomological Society, 90: 275301.Google Scholar
Systat Software, Incorporated 2002. Systat 10.2. Systat Software, Incorporated, San Jose, California, United States of America.Google Scholar
Ward, J.S., Anagnostakis, S.L., and Ferrandino, F.J. 1999. Stand dynamics in Connecticut hardwood forests. The old series plots (1927–1997). Connecticut Agricultural Experiment Station (New Haven), Bulletin, 959: 170.Google Scholar
White, J. 1980. Resource partitioning by ovipositing cicadas. The American Naturalist, 115: 128.CrossRefGoogle Scholar
White, J. and Lloyd, M. 1979. 17-year cicadas emerging after 18 years: a new brood? Evolution, 33: 11931199.Google Scholar
White, J., Lloyd, M., and Karban, R. 1982. Why don’t periodical cicadas normally live in coniferous forests? Environmental Entomology, 11: 475482.CrossRefGoogle Scholar
Williams, K.S. and Simon, C. 1995. The ecology, behavior, and evolution of periodical cicadas. Annual Review of Entomology, 40: 269295.Google Scholar
Williams, K.S. and Smith, K.G. 1991. Dynamics of periodical cicada chorus centers (Homoptera: Cicadidae: Magicicada). Journal of Insect Behavior, 4: 275291.Google Scholar