Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T08:43:14.907Z Has data issue: false hasContentIssue false

INFLUENCE OF STARVATION ON DEVELOPMENT AND REPRODUCTION IN APTEROUS VIRGINOPARAE OF THE PEA APHID, ACYRTHOSIPHON PISUM (HARRIS) (HOMOPTERA: APHIDIDAE)

Published online by Cambridge University Press:  31 May 2012

K.L. Kouamé
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6
M. Mackauer*
Affiliation:
Centre for Pest Management, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, CanadaV5A 1S6
*
1Author to whom reprint requests should be addressed.

Abstract

The influence of nutrient stress on growth, development, and reproduction in apterous virginoparae of the pea aphid, Acyrthosiphon pisum (Harris), was investigated in the laboratory. We tested the hypothesis that species with a high reproductive investment have low resistance to starvation. Aphids in two groups were starved daily from birth for 4 h and 6 h, respectively, and compared with feeding counterparts reared on leaves of broad beans, Vicia faba L. Aphid wet weight increased as an exponential function of age in all groups. Starved aphids had lower adult weight and required longer from birth to parturition than feeding aphids. These effects increased with the length of daily starvation. The number of offspring produced was correlated with adult dry weight. Aphids were unable to compensate, or to compensate completely, for water and nutrient loss resulting from starvation. It is suggested that pea aphids allocate resources first to maintenance and then to reproduction when deprived of food.

Résumé

L’influence de stress alimentaires sur la croissance, le développement et la reproduction de femelles aptères virginopares du Puceron du pois, Acyrthosiphon pisum (Harris) a été étudiée en laboratoire. Nous avons éprouvé l’hypothèse selon laquelle les espèces qui dépensent beaucoup d’énergie à la reproduction ont une faible résistance au jeûne. Des pucerons de deux groupes ont été soumis à des jeûnes quotidiens de 4 h et de 6 h et comparés à des pucerons nourris de feuilles de gourganes, Vicia faba L. La masse fraîche des pucerons augmentait avec l’âge selon une fonction exponentielle chez tous les groupes. Les pucerons soumis au jeûne avaient une masse moins élevée une fois adultes et ils mettaient plus de temps à se développer de la naissance à la parturition. Ces effets étaient d’autant plus marqués que la période quotidienne déjeune était longue. Le nombre de rejetons produits était fonction de la masse sèche des adultes. Les pucerons étaient incapables de compenser, ou alors ne compensaient que partiellement, les pertes d’eau et d’éléments nutritifs causées par le jeûne. Il semble que, lors d’une carence alimentaire, les pucerons assurent d’abord leur survie avant d’utiliser leurs ressources pour la reproduction.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, W.J., and Bohm, M.K.. 1975. Oosorption in insects. Biol. Rev. 50: 373396.CrossRefGoogle ScholarPubMed
Brough, C.N., and Dixon, A.F.G.. 1989. Reproductive investment and the inter-ovariole differences in embryo development and size in virginoparae of the vetch aphid, Megoura viciae. Entomologia exp. appl. 52: 215220.CrossRefGoogle Scholar
Brough, C.N., and Dixon, A.F.G.. 1990. The effects of starvation on development and reproductive potential of apterous virginoparae of vetch aphid, Megoura viciae. Entomologia exp. appl. 55: 4145.CrossRefGoogle Scholar
Campbell, A., and Mackauer, M.. 1977. Reproduction and population growth of the pea aphid (Homoptera: Aphididae) under laboratory and field conditions. Can. Ent. 109: 277284.CrossRefGoogle Scholar
Causton, D.R., and Venus, J.C.. 1981. The Biometry of Plant Growth. E. Arnold, London. 307 pp.Google Scholar
Clements, A.N., and Boocock, M.R.. 1984. Ovarian development in mosquitoes: Stages of growth and arrest, and follicular resorption. Physiol. Ent. 9: 18.CrossRefGoogle Scholar
Dixon, A.F.G., Chambers, R.J., and Dharma, T.R.. 1982. Factors affecting size in aphids with particular reference to the black bean aphid, Aphis fabae. Entomologia exp. appl. 32: 123128.CrossRefGoogle Scholar
Dixon, W.J. (Ed.). 1981. BMDP Statistical Software, 1981 ed. University of California Press, Berkeley, CA. 725 pp.Google Scholar
Fisher, R.A. 1921. Some remarks on the methods formulated in a recent article on “the quantitative analysis of plant growth”. Ann. Appl. Biol. 7: 367372.CrossRefGoogle Scholar
Grüber, K., and Dixon, A.F.G.. 1988. The effect of nutrient stress on development and reproduction in an aphid. Entomologia exp. appl. 47: 2330.CrossRefGoogle Scholar
Hardie, J. 1985. Starvation-induced oviparae in the black bean aphid, Aphis fabae. Entomologia exp. appl. 38: 287289.CrossRefGoogle Scholar
Khan, M.A., Koopmanschap, A.B., Privée, H., and de Kort, C.A.D.. 1982. The mode of regulation of the corpus allatum activity during starvation in adult females of the Colorado potato beetle, Leptinotarsa decemlineata (Say). J. Insect Physiol. 28: 791796.CrossRefGoogle Scholar
Lea, A.O., Briegel, H., and Lea, H.M.. 1978. Arrest, resorption, or maturation of oocytes in Aedes aegypti: Dependence on the quantity of blood and the interval between blood meals. Physiol. Ent. 3: 309316.CrossRefGoogle Scholar
Leather, S.R., Ward, S.A., and Dixon, A.F.G.. 1983. The effect of nutrient stress on life history parameters of the black bean aphid, Aphis fabae Scop. Oecologia 57: 156157.CrossRefGoogle ScholarPubMed
Mackauer, M., and Bisdee, H.E.. 1965. Two simple devices for rearing aphids. J. econ. Ent. 58: 365366.CrossRefGoogle Scholar
Mackauer, M., and Kambhampati, S.. 1988. Parasitism of aphid embryos by Aphidius smithi: Some effects of extremely small host size. Entomologia exp. appl. 49: 167173.CrossRefGoogle Scholar
McLean, D.L., and Kinsey, M.G.. 1968. Probing behavior of the pea aphid, Acyrthosiphon pisum. II. Comparisons of salivation and ingestion in host and non-host plant leaves. Ann. ent. Soc. Am. 61: 730739.CrossRefGoogle Scholar
McLean, D.L., and Kinsey, M.G.. 1969. Probing behavior of the pea aphid, Acyrthosiphon pisum. IV. Effects of starvation on certain probing activities. Ann. ent. Soc. Am. 62: 987994.CrossRefGoogle Scholar
Murdie, G. 1969. Some causes of size variation in the pea aphid, Acyrthosiphon pisum Harris. Trans. R. ent. Soc. Lond. 121: 423442.CrossRefGoogle Scholar
Noble, M.D. 1958. A simplified clip cage for aphid investigations. Can. Ent. 90: 760.CrossRefGoogle Scholar
Polaszek, A. 1986. The effects of two species of hymenopterous parasitoid on the reproductive system of the pea aphid, Acyrthosiphon pisum. Entomologia exp. appl. 40: 285292.CrossRefGoogle Scholar
Schroeder, L.A. 1976. Effect of food deprivation on the efficiency of utilization of dry matter, energy, and nitrogen in larvae of the cherry scallop moth Calocalpe undulata. Ann. ent. Soc. Am. 69: 5558.CrossRefGoogle Scholar
Sequeira, R., and Mackauer, M.. 1991. Nutritional ecology of an insect host–parasitoid association: The pea aphid – Aphidius ervi system. Ecology. In press.Google Scholar
Slansky, F. Jr, 1980. Effect of food limitation on food consumption and reproductive allocation by adult milkweed bugs, Oncopeltus fasciatus. J. Insect Physiol. 26: 7984.CrossRefGoogle Scholar
Slansky, F. Jr, and Scriber, J.M.. 1985. Food consumption and utilization. pp. 87–163 in Kerkut, G.A., and Gilbert, L.I. (Eds.), Comprehensive Insect Physiology Biochemistry and Pharmacology. Vol. 4: Regulation: Digestion, Nutrition, Excretion. Pergamon Press, Oxford. 639 pp.Google Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry, 2nd ed. W.H. Freeman and Company, San Francisco, CA. 859 pp.Google Scholar
Soldán, T., and Starý, P.. 1981. Parasitogenic effects of Aphidius smithi (Hymenoptera, Aphidiidae) on the reproductive organs of the pea aphid Acyrthosiphon pisum (Homoptera, Aphididae). Acta ent. bohemosl. 78: 243253.Google Scholar
SPSS. 1983. SPSSx User's Guide. SPSS Inc., Chicago, IL. 806 pp.Google Scholar
Tadkowski, T.M., and Jones, J.C.. 1979. Changes in the fat body and oocysts during starvation and vitellogenesis in a mosquito, Aedes aegypti (L.). J. Morph. 159: 185204.CrossRefGoogle Scholar
Trepte, H.-H., and Trepte-Feuerborn, C.H.. 1980. Development and physiology of follicular atresia during ovarian growth in the house fly, Musca domestica. J. Insect Physiol. 26: 329338.CrossRefGoogle Scholar
van Emden, H.F. 1977. Failure of the aphid, Myzus persicae, to compensate for poor diet during early growth. Physiol. Ent. 2: 5358.CrossRefGoogle Scholar
Walters, K.F.A., Brough, C., and Dixon, A.F.G.. 1988. Habitat quality and reproductive investment in aphids. Ecol. Ent. 13: 337345.CrossRefGoogle Scholar
Ward, S.A., and Dixon, A.F.G.. 1982. Selective resorption of aphid embryos and habitat changes relative to lifespan. J. Anim. Ecol. 51: 859864.CrossRefGoogle Scholar
Ward, S.A., Dixon, A.F.G., and Wellings, P.W.. 1983. The relation between fecundity and reproductive investment in aphids. J. Anim. Ecol. 52: 451461.CrossRefGoogle Scholar
Wyatt, I.J., and White, P.F.. 1977. Simple estimation of intrinsic increase rates for aphids and tetranychid mites. J. appl. Ecol. 14: 757766.CrossRefGoogle Scholar