Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T19:26:19.387Z Has data issue: false hasContentIssue false

New findings on life history traits of Xenos peckii (Strepsiptera: Xenidae)

Published online by Cambridge University Press:  13 February 2014

M. Hrabar
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
A. Danci
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
S. McCann
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
P.W. Schaefer
Affiliation:
4 Dare Drive, Elkton, Maryland 21921, United States of America
G. Gries*
Affiliation:
Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
*
1Corresponding author: (e-mail: gries@sfu.ca).

Abstract

We studied life history traits of Xenos peckii Kirby (Strepsiptera: Xenidae), a little-known parasite of the paper wasp Polistes fuscatus (Fabricus) (Hymenoptera: Vespidae) in North America. We field-collected 24 wasp nests in early July 2012, isolated parasitised wasps, tracked life history events of X. peckii, and recorded such behaviour as emergence of males and mating by normal-speed and high-speed cinematography. To emerge, males first cut the puparium with their mandibles along an ecdysial suture line, and then push aside the pupal cap during emergence. The endoparasitic females engage in active calling (pheromone release) behaviour by slowly inflating their cephalothorax, and then extruding it even farther out of, and tilting it away from, the host wasp abdomen. Seasonal and diel (afternoon) emergence periods of males coincide with seasonal and diel receptivity and calling periods of females. Males approach calling females in a swaying flight with smooth turns. They typically land on the anterior portion of the host wasp's abdomen, and then step backward until they make contact with the cephalothorax of the female. As soon as their mesothoracic legs contact the female's cephalothorax, they curl around it, and the male initiates mating. Thereafter, the female fully retreats and never re-mates.

Résumé

Nous avons étudié des caractéristiques du cycle biologique de Xenos peckii Kirby (Strepsiptera: Xenidae), un parasite mal connu de la guêpe à papier Polistes fuscatus (Fabricius) (Hymenoptera: Vespidae) en Amérique du Nord. Nous avons récolté 24 nids de guêpes en nature au début de juillet 2012, isolé les guêpes parasitées, suivi les étapes du cycle biologique de X. peckii et enregistré certains comportements, tels que l’émergence des mâles et l'accouplement, par cinématographie à vitesse normale et à haute vitesse. À l’émergence, les mâles coupent d'abord le puparium avec leurs mandibules le long de la ligne de déhiscence et poussent ensuite de côté la calotte de la pupe. Les femelles endoparasites entreprennent des comportements actifs d'appel (par émission de phéromones) en gonflant lentement leur céphalothorax, l'extirpant encore plus vers l'extérieur et le faisant pivoter loin de l'abdomen de la guêpe hôte. Les périodes d’émergence saisonnières et journalières (en après-midi) des mâles coïncident avec les périodes saisonnières et journalières de réceptivité et d'appel des femelles. Les mâles s'approchent des femelles en appel en un vol sinueux à virages en douceur. Ils se posent typiquement sur la partie antérieure de l'abdomen de la guêpe hôte et reculent jusqu’à ce qu'ils entrent en contact avec le céphalothorax de la femelle. Dès que les pattes mésothoraciques du mâle touchent le céphalothorax de la femelle, elles se replient autour de lui et le mâle commence l'accouplement. Ensuite, la femelle se retire totalement et ne s'accouple plus.

Type
Behaviour & Ecology
Copyright
Copyright © Entomological Society of Canada 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Heather Proctor

References

Beani, L. 2006. Crazy wasps: when parasites manipulate the Polistes phenotype. Annales Zoologici Fennici, 43: 546574.Google Scholar
Beani, L., Dallai, R., Mercati, D., Guisti, F., Cappa, F., Manfredini, F. 2011. When a parasite breaks all the rules of a colony: morphology and fate of wasps infected by a Strepsipteran endoparasite. Animal Behaviour, 82: 13051312.CrossRefGoogle Scholar
Beani, L., Guisti, F., Mercati, D., Lupetti, P., Paccagnini, E., Turillazzi, S., et al. 2005. Mating of Xenos vesparum (Rossi) (Strepsiptera, Insecta) revisited. Journal of Morphology, 265: 291303.CrossRefGoogle ScholarPubMed
Beutel, H.G., Pohl, H., Hünfeld, F. 2005. Strepsipteran brains and effects of miniaturization (Insecta). Arthropod Structure & Development, 34: 305313.CrossRefGoogle Scholar
Bohart, R.M. 1941. A revision of the Strepsiptera with special reference to the species of North America. Volume 7. University of California Publications in Entomology. Pp. 91–160.Google Scholar
Brues, C.T. 1905. Notes on the life history of the Stylopidae. Biological Bulletin, 8: 290295.CrossRefGoogle Scholar
Bushbeck, E., Ehmer, B., Hoy, R. 1999. Chunk versus point sampling: visual imaging in a small insect. Science, 286: 11781180.CrossRefGoogle Scholar
Bushbeck, E., Ehmer, B., Hoy, R. 2003. The unusual visual system of the Strepsiptera: external eye and neuropils. Journal of Comparative Physiology A–Neuroethology, Sensory Neural, and Behavioral Physiology, 189: 617630.CrossRefGoogle Scholar
Cvačka, J., Jiroš, P., Kalinová, B., Straka, J., Černá, K., Šebesta, P., et al . 2012. Stylopsal: the first identified female-produced sex pheromone of Strepsiptera. Journal of Chemical Ecology, 38: 14831491.CrossRefGoogle ScholarPubMed
Dallai, R., Lupetti, P., Giusti, F., Mercati, E., Paccagnini, E., Turillazzi, S., et al . 2004. Fine structure of the Nassonow's gland in the neotenic endoparasite of female Xenos vesparum (Rossi) (Strepsiptera, Insecta). Tissue and Cell, 36: 211220.CrossRefGoogle ScholarPubMed
Dapporto, L., Cini, A., Palagi, M., Simonti, A., Turillazzi, S. 2007. Behaviour and chemical signature of pre-hibernating females of Polistes dominulus infected by the Strepsipteran Xenos vesparum . Parasitology, 134: 545552.CrossRefGoogle ScholarPubMed
Dubitzky, A. 2001. Die äußere Morphologie von Xenos vesparum im REM (Strepsiptera Stylopidae). Mitteilungen der Münchner Entomologischen Gesellschaft, 91: 7176.Google Scholar
Fitzpatrick, S.M., Gries, R., Khaskin, G., Peach, D.A.H., Iwanski, J., Gries, G. 2013. Populations of the gall midge Dasineura oxycoccana on cranberry and blueberry produce and respond to different sex pheromones. Journal of Chemical Ecology, 39: 3749.CrossRefGoogle ScholarPubMed
Hayward, A., McMahon, D.P., Kathirithamby, J. 2011. Cryptic diversity and female host specificity in a parasitoid where the sexes utilize hosts from separate orders. Molecular Ecology, 20: 15081528.CrossRefGoogle Scholar
Henderickx, H. 2008. Faunistische Bemerkingen over Strepsiptera met onderzoek van een populatie Halictophagus silwoodensis (Halictopagidae) in het Nationaal Park Hoge Kempen (Maasmechelen). Phegea, 36: 103107.Google Scholar
Hubbard, H.G. 1892. The life history of Xenos . The Canadian Entomologist, 24: 257262.CrossRefGoogle Scholar
Hughes, H.G., Kathirithamby, J., Turillazzi, S., Beani, L. 2004. Social wasps desert the colony and aggregate outside if parasitized: parasite manipulation? Behavioral Ecology, 6: 10371043.CrossRefGoogle Scholar
Kathirithamby, J. 1983. The mode of emergence of the adult male Elenchus tenuicornis (Kirby) (Strepsiptera, Elenchidae) from its puparium. Zoological Journal of the Linnean Society, 77: 97102.CrossRefGoogle Scholar
Kathirithamby, J. 1989. Review of the order Strepsiptera. Systematic Entomology, 14: 4192.CrossRefGoogle Scholar
Kathirithamby, J. 2005. Further homage to Santa Rosalia: discovery at last of the elusive females of a species of Myrmecolacidae (Strepsiptera: Insecta). In Narrow roads of gene land: collected papers by W.D. Hamilton. Volume III . Edited by M. Ridley, Oxford University Press, New York, United States of America. Pp. 117134.CrossRefGoogle Scholar
Kathirithamby, J. 2009. Host-parasitoid associations in Strepsiptera. Annual Review of Entomology, 54: 227249.CrossRefGoogle ScholarPubMed
Kathirithamby, J., Carcuypino, M., Mazzini, M. 1990. Ovarian structure in the order Strepsiptera. Frustula Entomologica, 13: 18.Google Scholar
Kathirithamby, J., Hamilton, W.D. 1992. More covert sex: the elusive females of Myrmecolacidae. Trends in Ecology & Evolution, 7: 349351.CrossRefGoogle ScholarPubMed
Kathirithamby, J., Hayward, A., McMahon, D.P., Ferreira, R.S., Andreazze, R., Almeida Andrade, H.T.D., et al. 2010. Conspecifics of a heterotrophic heteronomous species of Strepsiptera (Insecta) are matched by molecular characterization. Systematic Entomology, 35: 234242.CrossRefGoogle Scholar
Kathirithamby, J., Hughes, D. 2006. Description and biological notes of the first species of Xenos (Strepsiptera: Stylopidae) parasitic in Polistes carnifex F. (Hymenoptera: Vespidae) in Mexico. Zootaxa, 1104: 3545.CrossRefGoogle Scholar
Kathirithamby, J., Luke, B.M., Neville, C. 1990. The ultrastructure of the preformed ecdysial ‘line of weakness’ in the puparium cap of Elenchus tenuicornis (Kirby) (Insecta: Strepsiptera). Zoological Journal of the Linnean Society, 98: 229236.CrossRefGoogle Scholar
Kinzelbach, R.K. 1967. Zur Kopfmorphologie der Fächerflügler (Strepsiptera, Insecta). Zoologische Jahrbücher (Anatomie), 84: 559684.Google Scholar
Kinzelbach, R.K. 1971. Comparative morphology of the Strepsiptera and its phylogenetic interpretation (Insecta, Strepsiptera). Zoologica (Stuttgart), 41 (Pts 1 and 2), 1256.Google Scholar
Lauterbach, G. 1954. Begattung und Larvengeburt bei den Strepsipteren. Zugleich ein Beitrag zur Anatomie der Stylops-Weibchen. Zeitschrift für Parasitenkunde, 16: 255297.CrossRefGoogle Scholar
Manfredini, F., Guisti, F., Beani, L., Dallai, L. 2007. Developmental strategy of the endoparasite Xenos vesparum (Strepsiptera: Insecta): invasion into the host and elusion of its defense reaction. Journal of Morphology, 268: 588601.CrossRefGoogle Scholar
McNeil, J.N. 1991. Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annual Review of Entomology, 36: 407430.CrossRefGoogle Scholar
Muir, F. 1906. Notes on some Fijian insects. Volume 2, Honolulu Experiment Station Hawaiian Sugar Planters’ Association. Division of Entomology. Pp. 1–11.Google Scholar
Nakase, Y., Kato, M. 2013. Cryptic diversity and host specificity in giant Xenos Strepsipterans parasitic in large Vespa hornets. Zoological Science, 30: 331336.CrossRefGoogle ScholarPubMed
Nassonow, N.V. 1892. Development of Xenos rossii (systematic position of the group). Congress of Zoology, 1: 174184.Google Scholar
Osswald, J., Pohl, H., Beutel, R.G. 2010. Extremely miniaturized and highly complex: the thoracic morphology of the first instar larva of Mengenilla chbouti (Insecta, Strepsiptera). Arthropod Structure and Development, 39: 287304.CrossRefGoogle Scholar
Pierce, W.D. 1909. A monographic revision of the twisted winged insects comprising the order Strepsiptera Kirby. Bulletin of the United States National Museum, 66: 1232.Google Scholar
Pohl, H., Beutel, G. 2004. Fine structure of adhesive devices of Strepsiptera (Insecta). Arthropod Structure & Development, 33: 3143.CrossRefGoogle ScholarPubMed
Pohl, H., Beutel, G. 2008. The evolution of Strepsiptera. Zoology, 111: 318338.CrossRefGoogle ScholarPubMed
Reynolds, S. 2013. Postembryonic development. In The insects: structure and function, 5th edition . Edited by S.J. Simpson and A.E. Douglas, Cambridge University Press, Cambridge, United Kingdom. Pp. 298454.Google Scholar
Ringo, J. 1996. Sexual receptivity in insects. Annual Review of Entomology, 41: 473494.CrossRefGoogle ScholarPubMed
Rösch, P. 1913. Beiträge zur Kenntnis der Entwicklungsgeschichte der Strepsipteren. Jenaische Zeitschrift für Naturwissenchaften, 50: 97146.Google Scholar
Salt, G. 1927. The effects of stylopization on Aculeate Hymenoptera. Journal of Experimental Zoology, 48: 223331.CrossRefGoogle Scholar
Salt, G. 1931. A further study of the effects of stylopization. Journal of Experimental Zoology, 59: 133166.CrossRefGoogle Scholar
Schrader, S.H. 1924. Reproduction of Achroschismus wheeleri Pierce. Journal of Morphology and Physiology, 39: 157197.CrossRefGoogle Scholar
Srdjan, M., Layne, J.E., Bushbeck, E.K. 2007. Behavioral evidence for within-eyelet resolution in twisted-winged insects (Strepsiptera). Journal of Experimental Biology, 210: 28192828.Google Scholar
Strohm, K. 1910. Die zusammengesetzten Augen der Männchen von Xenos rossi . Zoologischer Anzeiger, 36: 156159.Google Scholar
Tolasch, T., Kehl, S., Dötterl, S. 2012. First sex pheromone of the order Strepsiptera: (3R,5R,9R)-3,5,9-trimethyldodecanal in Stylops melittae Kirby, 1802. Journal of Chemical Ecology, 38: 14931503.CrossRefGoogle Scholar
Wachmann, E. 1972. Zum Feinbau des Komplexauges von Stylops spec. (Insecta, Strepsiptera). Zeitschrift für Zellforschung und Mikroskopische Anatomie, 123: 411424.CrossRefGoogle ScholarPubMed
Waloff, N. 1981. The life history and descriptions of Halictophagus silwoodensis sp. n. (Strepsiptera) and its host Ulopa reticulata (Cicadellidae) in Britain. Systematic Entomology, 6: 103113.CrossRefGoogle Scholar
Williams, J.R. 1957. The sugar-cane Delphacidae and their natural enemies in Mauritius. Transactions of the Royal Entomological Society of London, 109: 65110.CrossRefGoogle Scholar
File 3.6 MB
File 5.3 MB
File 16.8 MB
File 17.9 MB