Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T05:36:42.908Z Has data issue: false hasContentIssue false

Response of blueberry maggot fly (Diptera: Tephritidae) to imidacloprid-treated spheres and selected insecticides

Published online by Cambridge University Press:  02 April 2012

O.E. Liburd*
Affiliation:
Department of Entomology and Nematology, University of Florida, Building 970, Natural Area Drive, Gainesville, Florida 32611, United States of America
E.M. Finn
Affiliation:
Department of Entomology and Nematology, University of Florida, Building 970, Natural Area Drive, Gainesville, Florida 32611, United States of America
K.L. Pettit
Affiliation:
Department of Entomology, Center for Integrated Plant Systems, Michigan State University, East Lansing, Michigan 48824, United States of America
J.C. Wise
Affiliation:
Department of Entomology, Center for Integrated Plant Systems, Michigan State University, East Lansing, Michigan 48824, United States of America
*
1Corresponding author (e-mail: oeliburd@mail.ifas.ufl.edu).

Abstract

Imidacloprid-treated spheres and several classes of insecticides were evaluated in field and laboratory experiments to determine their effects on Rhagoletis mendax Curran adult behavioural activity and larval infestation in highbush blueberries, Vaccinium corymbosum L. (Ericaceae). In field tests, three treatments representing an attract-and-kill system (imidacloprid-treated spheres) and two classes of insecticides, including a naturalyte spinosad (SpinTor 2 SC) and organophosphates (Imidan®/Malathion), were evaluated against an untreated control. Significantly more blueberry maggot puparia were collected from untreated (control) plots than from other treatments evaluated. There were no significant differences in larval infestation of berries collected from plots treated with imidacloprid-treated spheres, SpinTor 2 SC, and Imidan®/Malathion. Less than 1% of the berries collected from imidacloprid-treated sphere plots and SpinTor 2 SC treated plots contained blueberry maggot larvae. In toxicity and fruit-injury studies, SpinTor 2 SC as well as additional compounds from various classes were evaluated, including a botanical [azadiractin (Ecozin 3%)], a particle film [kaolin clay (SurroundTM WP)], and three neonicotinoids [imidacloprid (Provado 1.6 F), thiocloprid (Calypso 480 SC), and thiamethoxam (PlatinumTM 2 SC and ActaraTM 25 WG)]. SpinTor 2 SC exhibited a time lag (18 h) in reducing R. mendax activity. Ecozin 3% and SurroundTM WP were ineffective in suppressing R. mendax adult activity, but numbers of larvae in SurroundTM WP treated fruit were significantly reduced. The effectiveness of neonicotinoid insecticides varied initially but resulted in equivalent levels of mortality after 48 h compared with our conventional organophosphate treatment of Guthion 50 WP. Oviposition scars on Provado 1.6 F treated plots were significantly more numerous than on plots treated with SpinTor 2 SC, Calypso 480 SC, Actara 25 WG, and Guthion 50 WP.

Résumé

Des sphères traitées à l'imidaclopride et plusieurs classes d'insecticides ont été évaluées au cours d'expériences en nature et en laboratoire pour déterminer leurs effets sur le comportement des adultes de Rhagoletis mendax Curran et sur les infestations de larves dans les plants d'airelles en corymbe, Vaccinium corym bosum L. (Ericaceae). Au cours d'essais sur le terrain, trois traitements représentant un système attraction–destruction (des sphères traitées à l'imidaclopride) et deux classes d'insecticides, dont un naturalyte spinosad (SpinTor 2 SC) et des organophosphorés (ImidanMD/Malathion), ont été évalués par comparaison à un témoin non traité. Les pupariums de la mouche des airelles ont été récoltés en nombres significativement plus grands dans les parcelles non traitées (témoins) que dans les parcelles traitées. Il n'y avait pas de différences significatives entre les parcelles où il y avait des sphères traitées à l'imidaclopride, du SpinTor 2 SC et de l'ImidanMD/Malathion. Moins de 1 % des airelles récoltées dans les parcelles contenant des sphères traitées à l'imidaclopride ou dans les parcelles traitées au SpinTor 2 SC contenaient des larves de mouches. Dans les évaluations de la toxicité et des dommages aux fruits, le SpinTor 2 SC de même que d'autres composés de classes diverses ont été testés, dont un composé botanique [l'azadiractine (écozine 3 %)], un film de particules [du kaolin (SurroundMD WP)] et trois nicotinoïdes [l'imidaclopride (Povado 1,6 F), le thioclopride (Calypso 480 SC) et le thiométhoxam (PlatinumMD 2 SC et ActaraMD 25 WG)]. Le SpinTor 2 SC met 18 h avant de réduire l'activité de R. mendax. L'écozine 3 % et SurroundMD WP sont inefficaces contre les adultes de R. mendax, mais le nombre de larves dans les fruits traités au SurroundMD WP avait diminué considérablement. L'efficacité des insecticides néonicotinoïdes est variable au début, mais après 48 h, donne les mêmes taux de mortalité que le traitement conventionnel à un organophosphoré, le Guthion 50 WP. Les cicatrices de ponte dans les parcelles traitées au Provado 1,6 F sont significativement plus nombreuses que dans celles traitées au Spin Tor 2 SC, au Calypso 480 C, à l'Actara 25 WG et au Guthion 50 WP.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adan, A., Pedro, P.D., Budia, F., Gonzales, M., Vinuela, E. 1996. Laboratory evaluation of the novel naturally derived compound Spinosad against Ceratitis capitata. Pesticide Science 48: 261–83.0.CO;2-R>CrossRefGoogle Scholar
Ayyappath, R., Polavarapu, S., McGuire, M.R. 2000. Effectiveness of thiamethoxam-coated spheres against blueberry maggot flies (Diptera: Tephritidae). Journal of Economic Entomology 93: 1473–9CrossRefGoogle Scholar
Food Quality Protection Act. 1996. P. L. 104–170. United States Congressional Board 42: 1489–538Google Scholar
Gaul, S.O., Neilson, W.T.A., Estabrooks, E.N., Crozier, L.M., Fuller, M. 1995. Deployment and utility of traps for management of Rhagoletis mendax (Diptera: Tephritidae). Journal of Economic Entomology 88: 134–9CrossRefGoogle Scholar
Glenn, D.M., Puterka, G.J., Vanderzwet, T., Byers, R.E., Feldhake, C. 1999. Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases. Journal of Economic Entomology 92: 759–71CrossRefGoogle Scholar
Hu, X.P., Prokopy, R.J. 1998. Lethal and sub-lethal effects of imidacloprid on apple maggot fly, Rhagoletis pomonella Walsh (Dipt., Tephritidae). Journal of Applied Entomology 122: 3742CrossRefGoogle Scholar
Knight, A.L., Unruh, T.R., Christianson, B.A., Puterka, G.J., Glenn, D.M. 2000. Effects of a kaolin-based particle film on obliquebanded leafroller (Lepidoptera: Tortricidae). Journal of Economic Entomology 93: 744–9CrossRefGoogle ScholarPubMed
Liburd, O.E., Stelinski, L.L. 1999. Apple maggot fly and its sibling species: physiological and environmental status. Michigan State University Crop Advisory Team Alert Extension Newsletter 14: 34Google Scholar
Liburd, O.E., Alm, S.R., Casagrande, R.A. 1998 a. Susceptibility of highbush blueberry cultivars to larval infestation by Rhagoletis mendax (Diptera: Tephritidae). Environmental Entomology 27: 817–21CrossRefGoogle Scholar
Liburd, O.E., Alm, S.R., Casagrande, R.A., Polavarapu, S. 1998 b. Effect of trap color, bait, shape, and orientation in attraction of blueberry maggot (Diptera: Tephritidae) flies. Journal of Economic Entomology 91: 243–9CrossRefGoogle Scholar
Liburd, O.E., Gut, L.J., Stelinski, L.L., Whalon, M.E., McGuire, M.R., Wise, J.C., Hu, X.P., Prokopy, R.J. 1999. Mortality of Rhagoletis species encountering pesticide-treated spheres (Diptera: Tephritidae). Journal of Economic Entomology 92: 1151–6CrossRefGoogle Scholar
Liburd, O.E., Polavarapu, S., Alm, S.A., Casagrande, R.A. 2000 a. Effect of trap size, placement, and age on captures of blueberry maggot flies (Diptera: Tephritidae). Journal of Economic Entomology 93: 1452–8CrossRefGoogle Scholar
Liburd, O.E., Funderburk, J.E., Olson, S.M. 2000 b. Effect of biological and chemical insecticides on Spodoptera species (Lep., Noctuidae) and marketable yields of tomatoes. Journal of Applied Entomology 124: 1925CrossRefGoogle Scholar
Prokopy, R.J., Coli, W.M. 1978. Selective traps for monitoring Rhagoletis mendax flies. Protection Ecology 1: 4553Google Scholar
Salgado, V.L. 1997. The modes of action of Spinosad and other insect control products. Down to Earth 52(1): 3940Google Scholar
SAS Institute Inc. 2001. SAS system for Windows. Release 8.2. Cary, North Carolina: SAS Institute IncGoogle Scholar
Stelinski, L.L., Liburd, O.E. 2001. Evaluation of various deployment strategies of imidacloprid-treated spheres in highbush blueberries for control of Rhagoletis mendax (Diptera: Tephritidae). Journal of Economic Entomology 94: 905–10CrossRefGoogle Scholar
VanRanden, E.J., Roitberg, B.D. 1998. Effect of a Neem (Azidirachta indica)-based insecticide on oviposition deterrence, survival, behavior and reproduction of adult western cherry fruit fly (Diptera: Tephritidae). Ecology and Behavior 91: 123–31Google Scholar
Wood, M., Hardin, B. April 2000. Spinosad battles crop pests. pp 10–2 in Sowers, R. (Ed), Agricultural Research. Beltsville, Maryland: US Department of AgricultureGoogle Scholar