Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T12:00:28.027Z Has data issue: false hasContentIssue false

SUPERPARASITISM OF GYPSY MOTH, LYMANTRIA DISPAR (L.) (LEPIDOPTERA: LYMANTRIIDAE), LARVAE BY PARASETIGENA SILVESTRIS (ROBINEAU-DESVOIDY) (DBPTERA: TACHINIAE)

Published online by Cambridge University Press:  31 May 2012

Juli R. Gould
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA01003
Joseph S. Elkinton
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA01003
Thomas M. ODell
Affiliation:
Department of Entomology, University of Massachusetts, Amherst, Massachusetts, USA01003

Abstract

In the field, superparasitism of Lymantria dispar (L.) by Parasetigena silvestris (Robineau-Desvoidy) was not the result of random oviposition, but, because parasitoid eggs were aggregated, certain hosts were more likely to be parasitized than average. Parasitoid eggs were more aggregated when gypsy moth larvae were collected from under burlap bands than when larvae were collected elsewhere in the same 9-ha plot, resulting in lowered mortality due to parasitism. This finding suggests that collecting larvae from burlap bands may not provide accurate estimates of the impact of P. silvestris on populations of L. dispar. In laboratory studies, deposition of more than one egg on a single host significantly increased parasitoid emergence and host mortality. However, increasing superparasitism had a negative effect on both the probability that an individual parasitoid would survive to emerge from a host and the size of the puparium produced by the parasitoid. The probability of parasitoid survival was higher when fifth- rather than fourth-instar gypsy moth larvae were attacked, but puparia produced by parasitoids emerging from fifth-instar larvae were smaller.

Résumé

En nature, la présence du superparasite Parasetigena silvestris (Robineau-Desvoidy) chez des Spongieuses Lymantria dispar (L.) n’est pas le résultat de pontes au hasard; en effet, comme les oeufs du parasitoïde sont pondus en masses, certains hôtes sont plus susceptibles que la moyenne d’être parasités. Les oeufs des parasitoïdes se sont avérés plus agglutinés lorsque les larves de spongieuses étaient recueillies sous des bandes de jute que lorsqu’elles étaient récoltées ailleurs dans la même grille échantillon (9 ha) et le taux de mortalité dû au parasitisme était moins élevé chez ces larves. Ces observations indiquent que la récolte des larves sous des bandes de jute ne donne pas une estimation juste de l’impact de P. silvestris sur les populations de L. dispar. Au cours d’études en laboratoire, la ponte d’un oeuf ou plus sur un seul hôte a augmenté significativement l’émergence des parasitoïdes et la mortalité de l’hôte. Cependant, l’augmentation du superparasitisme avait un effet négatif sur la probabilité individuelle de survie des parasitoïdes jusqu’à l’émergence et sur la taille de leurs pupariums. La probabilité de survie des parasitoïdes était plus élevée lorsque les larves attaquées étaient des larves de cinquième plutôt que de quatrième stade, mais les pupariums des parasitoïdes émergeant des larves de cinquième stade étaient plus petits.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alphen, J.J.M. van, and Nell, H.W.. 1982. Superparasitism and host discrimination by Asobara tabida Nees (Braconidae: Alysiinae), a larval parasitoid of Drosophilidae. Neth. J. Zool. 32: 232260.CrossRefGoogle Scholar
Alphen, J.J.M. van, and Visser, M.E.. 1990. Superparasitism as an adaptive strategy for insects. A. Rev. Ent. 35: 5979.CrossRefGoogle Scholar
Bakker, K., van Alphen, J.J.M., van Batenburg, F.H.D., van der Hoeven, N., Nell, H.W., van Strienvan Liempt, W.T.F.H., and Turlings, T.C.. 1985. The function of host discrimination and superparasitization in parasitoids. Oecologia 67: 572576.CrossRefGoogle ScholarPubMed
Barbosa, P., Capinera, J.L., and Harrington, E.A.. 1975. The gypsy moth parasitoid complex in western Massachusetts: A study of parasitoids in areas of high and low host density. Environ. Ent. 4: 842846.CrossRefGoogle Scholar
Beland, G.L., and King, E.G.. 1976. Southwestern corn borer: Suitability of larval stages for development of the tachinid parasite, Lixophaga diatraeae. Environ. Ent. 5: 421426.CrossRefGoogle Scholar
Bell, R.A., Owens, C.S., Shapiro, M., and Tardif, J.R.. 1981. Development of mass-rearing technology. pp. 599–633 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. U.S.D.A. Tech. Bull. 1584. 757 pp.Google Scholar
Bogenschutz, H., Maier, K., and Trzebitzky, C.. 1989. Gypsy moth outbreak and control in southwest Germany, 1984–1986. pp. 89–99 in Proceedings, Lymantriidae: A Comparison of Features of New and Old World Tussock Moths. Northeastern Forest Experiment Station, Broomall, PA. 554 pp.Google Scholar
Burgess, A.F., and Crossman, S.S.. 1929. Imported insect enemies of the gipsy [sic] moth and the brown-tail moth. U.S.D.A. Tech Bull. 86.Google Scholar
Cloutier, C. 1984. The effect of host density on egg distribution by the solitary parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Can. Ent. 116: 805811.CrossRefGoogle Scholar
Elliott, J.M. 1983. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association Publication 25. 159 pp.Google Scholar
Freedman, D., Pisani, R., and Purves, R.. 1978. Statistics. W.W. Norton and Co., New York, NY.Google Scholar
Gould, J.R., Elkinton, J.S., Van Driesche, R.G., and ODell, T.M.. 1989. A review of techniques for measuring the impact of parasitoids of Lymantriidae. pp. 517–531 in Wallner, W.E., and McMannus, K.A. (Eds.), Lymantriidae: A Comparison of Features of New and Old World Tussock Moths. Northeastern Forest Experiment Station, Broomall, PA. 554 pp.Google Scholar
Gould, J.R., Elkinton, J.S., and Wallner, W.E.. 1990. Density-dependent suppression of experimentally created gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), populations by natural enemies. J. Anim. Ecol. 59: 213233.CrossRefGoogle Scholar
Green, R.H. 1966. Measurement of non-randomness in spatial distributions. Res. Pop. Ecol. 8: 17.CrossRefGoogle Scholar
Hubbard, S.F., Marris, G., Reynolds, A., and Rowe, G.W.. 1987. Adaptive patterns in the avoidance of super-parasitism by solitary parasitic wasps. J. Anim. Ecol. 56: 387401.CrossRefGoogle Scholar
King, E.G., Miles, L.R., and Martin, D.F.. 1976. Some effects of superparasitism by Lixophaga diatraeae of sugarcane borer larvae in the laboratory. Entomologia exp. appl. 20: 261269.CrossRefGoogle Scholar
Lawrence, P.O. 1988. Superparasitism of the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae), by Biosteres longicaudatus (Hymenoptera: Braconidae): Implications for host regulation. Ann. ent. Soc. Am. 81: 233239.CrossRefGoogle Scholar
Lenteren, J.C. van. 1981. Host discrimination by parasitoids. pp. 153179in Nordlund, D.A., Jones, R.L., and Lewis, W.J. (Eds.), Semiochemicals, Their Role in Pest Control. Wiley, New York, NY.Google Scholar
Leonard, D.E. 1981. Bioecology of the gypsy moth. pp. 9–29 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research Toward Integrated Pest Management. U.S.D.A. Tech. Bull. 1584. 757 pp.Google Scholar
Maier, V.K. 1990. Beitrag zur biologie primärer und sekundärer parasitoide von Lymantria dispar L. (Lep., Lymantriidae). J. appl. Ent. 110: 167182.CrossRefGoogle Scholar
Milliken, G.A., and Johnson, D.E.. 1984. Analysis of Messy Data. Van Nostrand Reinhold, New York, NY.Google Scholar
ODell, T.M., and Godwin, P.A.. 1979. Attack behavior of Parasetigena silvestris in relation to host density and behavior. Ann. ent. Soc. Am. 72: 281286.CrossRefGoogle Scholar
Pak, G.A., and Oatman, E.R.. 1982. Biology of Trichogramma brevicopillum. Entomologia exp. appl. 32: 6167.CrossRefGoogle Scholar
Prell, H. 1915. Zur Biologie der Tachinen Parasetigena segregata Rdi. und Panzeria rudis Fall. Z. Angewan. Ent. 2: 57148.CrossRefGoogle Scholar
Puttler, B. 1974. Hypera postica and Bathyplectes curculionis: Encapsulation of parasite eggs by host larvae in Missouri and Arkansas. Environ. Ent. 3: 881882.CrossRefGoogle Scholar
Reardon, R.C. 1976. Parasite incidence and ecological relationships in field populations of gypsy moth larvae and pupae. Environ. Ent. 5: 981987.CrossRefGoogle Scholar
Rogers, D. 1975. A model for avoidance of superparasitism by solitary insect parasitoids. J. Anim. Ecol. 44: 623638.CrossRefGoogle Scholar
Royama, T. 1981. Evaluation of mortality factors in insect life table analysis. Ecol. Monogr. 51: 495505.CrossRefGoogle Scholar
Salt, G. 1961. Competition among insect parasitoid. In Mechanisms in Biological Competition. Symposium of the Society of Experimental Biology 15: 96119.Google Scholar
SAS Institute. 1988. SAS/STAT User's Guide. Ingraham, K.P., Luginbuhl, R.C., Scholtzhauer, S.D., and Watts, H. (Eds.). SAS Institute Inc., Cary, NC. 1028 pp.Google Scholar
Streams, F.A. 1971. Encapsulation of insect parasites in superparasitized hosts. Entomologia exp. appl. 14: 484490.CrossRefGoogle Scholar
Ticehurst, M., Fusco, R.A., Kling, R.P., and Unger, J.. 1978. Observations on parasites of gypsy moth in first cycle infestations in Pennsylvania from 1974–1977. Environ. Ent. 7: 355358.CrossRefGoogle Scholar
Tigner, T.C., Palm, C.E., and Jackson, J.J.. 1974. Gypsy moth parasitism under and outside burlap skirts at two heights. Applied Forestry Research Report 20. 34 pp.Google Scholar
Vinson, S.B. 1990. How parasitoids deal with the immune system of their hosts: An overview. Arch. Insect Biochem. Physiol. 13: 327.CrossRefGoogle Scholar
Waage, J.K. 1986. Family planning in parasitoids: Adaptive patterns of progeny and sex allocation. pp. 6395in Waage, J., and Greathead, D. (Eds.), Insect Parasitoids. Academic, New York, NY.Google Scholar
Waage, J.K., and Ming, Ng Sook. 1984. The reproductive strategy of a parasitic wasp. I. Optimal progeny and sex allocation in Trichogramma evanscens. J. Anim. Ecol. 53: 401416.CrossRefGoogle Scholar
Weseloh, R.M. 1974. Host-related microhabitat preferences of the gypsy moth larval parasitoid, Parasetigena agilis. Environ. Ent. 3: 363364.CrossRefGoogle Scholar
Weseloh, R.M. 1976. Diel periodicity and host selection, as measured by ovipositional behavior, of the gypsy moth parasite, Parasetigena silvestris, in Connecticut woodlands. Environ. Ent. 5: 514516.CrossRefGoogle Scholar
Wilson, R.W., and Fontaine, G.A.. 1978. Gypsy moth egg-mass sampling with fixed- and variable-radius plots. U.S.D.A. Handbook 523.Google Scholar