Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T08:03:34.289Z Has data issue: false hasContentIssue false

Susceptibilities of seven Brassicaceae species to infestation by the cabbage seedpod weevil (Coleoptera: Curculionidae)

Published online by Cambridge University Press:  02 April 2012

A.R. Kalischuk*
Affiliation:
Alberta Agriculture, Food and Rural Development, 100, 5401 – 1 Avenue South, Lethbridge, Alberta, Canada T1J 4V6
L.M. Dosdall
Affiliation:
Department of Agricultural, Food and Nutritional Science, University of Alberta, 4–10 Agriculture/Forestry Centre, Edmonton, Alberta, Canada T6G 2P5
*
1 Corresponding author (e-mail: andrea.kalischuk@gov.ab.ca).

Abstract

Various genotypes of seven species of Brassicaceae (Brassica rapa L., B. napus L., B. juncea (L.) Czern., B. nigra (L.) Koch, B. tournefortii Gouan, Sinapis alba L., Crambe abyssinica Hochst. ex R.E. Fries, and B. napus × S. alba) were evaluated for susceptibility to infestation by the cabbage seedpod weevil, Ceutorhynchus obstrictus (Marsham). In the field, weevils were counted by excising and dissecting pod samples weekly for the presence of eggs, larvae, and larval exit holes. In the laboratory, excised pods from potted plants were exposed to gravid female weevils for 24 or 48 h and then the numbers of eggs and (or) feeding punctures were assessed. Differences in susceptibility of Brassicaceae species to the cabbage seedpod weevil were relatively consistent in both field and laboratory studies. Brassica rapa was the most susceptible. Intermediate susceptibility was observed for B. napus, B. napus × S. alba, B. tournefortii, and B. juncea, although the last species displayed some antixenotic resistance. Sinapis alba, B. nigra, and C. abyssinica were least susceptible. Pods of some species more frequently contained single, rather than multiple, larvae and this may have important implications for total yield loss, particularly in areas where opportunistic pests utilize weevil exit holes to gain access to seeds. New-generation adults fed on all Brassicaceae, and therefore all species may be susceptible to some yield loss. Canola growers in regions infested with C. obstrictus at high population densities can reduce losses by seeding S. alba, B. juncea, or a less susceptible genotype of B. napus.

Résumé

Nous avons évalué la vulnérabilité de divers génotypes de sept espèces de Brassicaceae (Brassica rapa L., B. napus L., B. juncea (L.) Czern., B. nigra (L.) Koch, B. tournefortii Gouan, Sinapis alba L., Crambe abyssinica Hochst. ex R.E. Fries, et B. napus × S. alba) à l'infestation de Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae). Dans les champs, nous avons déterminé la densité des charançons en détachant et disséquant des échantillons hebdomadaires de siliques pour vérifier la présence d'oeufs, de larves et de trous d'émergence des larves. En laboratoire, nous avons exposé des siliques détachées de plants en pots à des charançons femelles gravides pendant 24 ou 48 h et dénombré le nombre d'oeufs et (ou) de ponctions alimentaires. Les différences de vulnérabilité des espèces de Brassiceae au charançon de la silique du chou concordent dans les études en nature et en laboratoire. Brassica rapa est l'espèce la plus vulnérable. Brassica napus, B. napus × S. alba, B. tournefortii et B. juncea affichent des vulnérabilités moyennes, bien que B. juncea possède une certaine résistance antixénique. Sinapis alba, B. nigra et C. abyssinica sont les espèces les moins vulnérables. Les siliques de certaines espèces contiennent plus fréquemment une seule larve que plusieurs; ce phénomène peut avoir des conséquences importantes sur la perte totale de rendement, particulièrement là où les ravageurs opportunistes utilisent les trous d'émergence des larves pour accéder aux graines. Comme les adultes de la nouvelle génération s'alimentent sur tous les espèces de Brassicaceae, ces dernières sont toutes susceptibles de subir des pertes de rendement. Dans les régions de fortes densités de population de C. obstrictus, les producteurs de canola peuvent réduire leurs pertes en semant S. alba, B. juncea ou un génotype moins vulnérable de B. napus.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, W.M. 1936. Notes on a European weevil, Ceutorhynchus assimilis Payk., recently found in the state of Washington. The Canadian Entomologist 68: 191–3CrossRefGoogle Scholar
Bonnemaison, L. 1957. Le charançon des siliques (Ceutorhynchus assimilis Payk.) biologie et méthode de lutte. Annales des Epiphytes 4: 387543Google Scholar
Brodeur, J., Leclerc, L.A., Fournier, M., Roy, M. 2001. The cabbage seedpod weevil (Coleoptera: Curculionidae): a new pest of canola in northeastern North America. The Canadian Entomologist 133: 109–11CrossRefGoogle Scholar
Brown, J., Brown, A.P., Davis, J.B., Erickson, D.A. 1997. Intergeneric hybridization between Sinapis alba and Brassica napus. Euphytica 93: 163–8CrossRefGoogle Scholar
Brown, J., McCaffrey, J.P., Harmon, B.L., Davis, J.B., Brown, A.P., Erickson, D.A. 1999. Effect of late season insect infestation on yield, yield components and oil quality of Brassica napus, B. rapa, B. juncea and Sinapis alba in the Pacific Northwest region of the United States. Journal of Agricultural Science 132: 281–8CrossRefGoogle Scholar
Buntin, G.D. 1999. Damage loss assessment and control of the cabbage seedpod weevil (Coleoptera: Curculionidae) in winter canola using insecticides. Journal of Economic Entomology 92: 220–7CrossRefGoogle Scholar
Butts, R.A., Byers, J.R. 1996. Cabbage seedpod weevil: A potential new pest of canola in southern Alberta. Pest Management News 8: 5Google Scholar
Cárcamo, H.A., Dosdall, L., Dolinski, M., Olfert, O., Byers, J.R. 2001. The cabbage seedpod weevil, Ceutorhynchus obstrictus (Coleoptera: Curculionidae) — a review. Journal of the Entomological Society of British Columbia 98: 201–10Google Scholar
Dmoch, J. 1965. The dynamics of a population of the cabbage seedpod weevil (Ceutorhynchus assimilis Payk.) and the development of winter rape. Part I. Ekologia Polska Seria A 13: 249–87Google Scholar
Dosdall, L.M., Dolinski, M.G. 2001. Biology and control of the cabbage seedpod weevil, a new pest of canola in Alberta. Edmonton, Alberta: Alberta Agriculture, Food and Rural DevelopmentGoogle Scholar
Dosdall, L.M., Moisey, D., Cárcamo, H., Dunn, R. 2001. Cabbage seedpod weevil factsheet. Agdex 622–21. Ed- monton, Alberta: Alberta Agriculture, Food and Rural DevelopmentGoogle Scholar
Dosdall, L.M., Weiss, R.W., Olfert, O., Cárcamo, H.A. 2002. Temporal and geographical distribution patterns of cabbage seedpod weevil (Coleoptera: Curculionidae) in canola. The Canadian Entomologist 134: 403–17CrossRefGoogle Scholar
Doucette, C.F. 1947. Host plants of the cabbage seedpod weevil. Journal of Economic Entomology 40: 838–40CrossRefGoogle ScholarPubMed
Fox, A., Dosdall, L. 2003. Reproductive biology of Ceutorhynchus obstrictus (Coleoptera: Curculionidae) on wild and cultivated Brassicaceae in southern Alberta. Journal of Entomological Science 38: 365–76CrossRefGoogle Scholar
Free, J.B., Ferguson, A.W., Winfield, S. 1983. Effect of various levels of infestation by the seed weevil (Ceutorhynchus assimilis Payk.) on the seed yield of oil-seed rape (Brassica napus L.). Journal of Agricultural Science 101: 589–96CrossRefGoogle Scholar
Harmon, B.L., McCaffrey, J.P. 1997. Laboratory bioassay to assess Brassica spp. germplasm for resistance to the cabbage seedpod weevil (Coleoptera: Curculionidae). Journal of Economic Entomology 90: 1392–9CrossRefGoogle Scholar
Heymons, R. 1922. Mitteilungen über der Rapsrüßler, Ceutorrynchus assimilis Payk. und seinen Parasiten Trichomalus fasciatus Thoms. Zeitschrift fuer Angewandte Entomologie 8: 93112CrossRefGoogle Scholar
Hoffman, A. 1954. Coleopteres Curculionides: Ceutorhynchus assimilis Paykull. Faune de France 5: 994–7Google Scholar
Kozlowski, M.W., Lux, S., Dmoch, J. 1983. Oviposition behaviour and pod marking in the cabbage seed weevil, Ceutorhynchus assimilis. Entomologia Experimentalis et Applicata 34: 277–82CrossRefGoogle Scholar
McCaffrey, J.P. 1992. Review of US canola complex: cabbage seedpod weevil. pp 140–3 in Proceedings of the 1992 US Canola Conference, Washington, DC, 5–6 March 1992. Memphis, Tennessee: Ameri-Can Pedigreed Seed CompanyGoogle Scholar
McCaffrey, J.P., Harmon, B.L., Brown, J., Brown, A.P., Davis, J.B. 1999. Assessment of Sinapis alba, Brassica napus and S. alba × B. napus hybrids for resistance to cabbage seedpod weevil, Ceutorhynchus assimilis (Coleoptera: Curculionidae). Journal of Agricultural Science 132: 289–95CrossRefGoogle Scholar
McLeod, J.H. 1953. Notes on the cabbage seedpod weevil, Ceutorhynchus assimilis Payk. (Coleoptera, Curculionidae) and its parasites. Proceeding of the Entomological Society of British Columbia 49: 1118Google Scholar
McLeod, J.H. 1962. Cabbage seedpod weevil — Ceutorhynchus assimilis (Payk.) Curculionidae. pp 56in McLeod, J., McGugan, B.M., Coppel, H.C. (Eds), A review of biological control attempts against insects and weeds in Canada. Farnham Royal, United Kingdom: Commonwealth Agricultural BureauxGoogle Scholar
Prakash, S. 1974. Haploid meiosis and origin of Brassica tournefortii Gouan. Euphytica 23: 591–5CrossRefGoogle Scholar
Ripley, V.L., Arnison, P.G. 1990. Hybridization of Sinapis alba L., and Brassica napus L. via embryo rescue. Plant Breeding 104: 2633CrossRefGoogle Scholar
Risbec, J. 1953. Contribution a l'étude de Ceuthorhynchus assimilis Payk charančon des siliques du colza. Revue de pathologie vegetale et d'entomologie agricole de France 31: 137–74Google Scholar
Salisbury, P.A. 1991. Genetic variability in Australian wild crucifers and potential utilization in oilseed Brassica species. PhD thesis, La Trobe University, Melbourne, AustraliaGoogle Scholar
SAS Institute Inc. 1999. SAS system for personal computers, release 8.1. Cary, North Carolina: SAS Institute IncGoogle Scholar
Singh, S.R., Narain, A., Srivastava, K.P., Siddiqui, J.A. 1965. Fecundity of mustard aphid on different rapes and mustard species. Indian Oilseeds Journal 9: 215–9Google Scholar
Yang, Y-W, Tseng, P-F, Tai, P-Y, Chang, C-J. 1998. Phylogenetic position of Raphanus in relation to Brassica species based on 5S rRNA spacer sequence data. Botanical Bulletin of Academia Sinica (Taipei) 39: 153–60Google Scholar