Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T00:33:47.132Z Has data issue: false hasContentIssue false

Temperature modulation of photoperiodism and the timing of late-season changes in life history for an aphid, Acyrthosiphon pisum

Published online by Cambridge University Press:  03 January 2012

M.A.H. Smith*
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, CanadaR3T 2M9
P.A. MacKay
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, CanadaR3T 2N2
R.J. Lamb
Affiliation:
Cereal Research Centre, Agriculture and Agri-Food Canada, 195 Dafoe Road, Winnipeg, Manitoba, CanadaR3T 2M9
*
1Corresponding author (e-mail: marjorie.smith@agr.gc.ca).

Abstract

Where winters are severe, aphids reproduce parthenogenetically and viviparously in summer, switch to sexual reproduction in late summer, and produce winter-hardy eggs by the end of the season. The role of day length and temperature in initiating seasonal changes from parthenogenetic to sexual reproduction by pea aphids, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), are described and the selection pressures that affect the timing of this transition are investigated. Over four seasons, a pea aphid clone was sampled from field cages through late summer in southern Manitoba, Canada, and reared in the laboratory to determine the phenotypes of progeny produced as the season progressed. The timing of transitions from one phenotype to another under natural day length and temperature, and the critical day lengths that caused the transitions, coincided with expectations from laboratory studies of photoperiodic responses. Males and mating females appeared later when the weather in August was warm than when it was cool. The timing of seasonal changes was adapted to minimize the physiological time to the end of the season, which maximized the number of asexual summer generations. Ambient temperature modulated the response to day length and fine-tuned the timing of sexual reproduction to adapt for annual variation in autumn weather.

Résumé

Dans les endroits où les hivers sont rudes, les pucerons se reproduisent par parthénogenèse et viviparité en été, changent pour la reproduction sexuelle en fin d'été et produisent des œufs résistants à l'hiver vers la fin de la saison. Nous décrivons les rôles de la photopériode et de la température dans l'initiation du passage de la reproduction parthénogénétique à la reproduction sexuée chez le puceron du pois, Acyrthosiphon pisum (Harris) (Hemiptera : Aphididae), et étudions les pressions de sélection qui affectent le calendrier de cette transition. Nous avons prélevé des échantillons pendant quatre saisons dans un clone de pucerons du pois dans des cages en nature jusque tard en été dans le sud du Manitoba, Canada; nous en avons fait des élevages en laboratoire pour déterminer les phénotypes des rejetons produits à mesure que la saison avançait. Le calendrier des transitions d'un phénotype à l'autre dans les conditions naturelles de photopériode et de température et les photopériodes critiques qui provoquent ces transitions s'accordent bien avec les prévisions obtenues à partir des réactions à la photopériode en laboratoire. Les mâles et les femelles copulatrices apparaissent plus tard lorsque le mois d'août est chaud que lorsqu'il est frais. Le calendrier des changements saisonniers est adapté pour minimiser le temps physiologique jusqu'à la fin de la saison, ce qui permet un maximum de générations asexuées d'été. La température ambiante contrôle la réaction à la photopériode et ajuste avec précision le calendrier de la reproduction sexuelle pour l'adapter à la variation annuelle des conditions climatiques de l'automne.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, A.B.M., Tatchell, G.M., Harrington, R., and Bale, J.S. 1996. Adaptive significance of changes in morph production during the transition from parthenogenetic to sexual reproduction in the aphid Rhopalosiphum padi (Homoptera:Aphididae). Bulletin of Entomological Research, 86: 9399. doi:10.1017/S0007485300052317.Google Scholar
Blackman, R.L. 1971. Variation in the photoperiodic response within natural populations of Myzus persicae Sulz. Bulletin of Entomological Research, 60: 533546. doi:10.1017/S0007485300042292.CrossRefGoogle ScholarPubMed
Blackman, R.L. 1974. Aphids. Ginn & Company Ltd., London.Google Scholar
Blackman, R.L. 1994. The simplification of aphid terminology. European Journal of Entomology, 91 : 139141.Google Scholar
Cortés, T., Tagu, D., Simon, J.C., Moya, A., and Martinez-Torres, D. 2008. Sex versus parthenogenesis: a transcriptomic approach of photoperiod response in the model aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Gene, 408: 146156. PMID:18065167 doi:10.1016/j.gene.2007.10.030.CrossRefGoogle ScholarPubMed
Dedryver, C.A., Le Gallic, J.F., Gauthier, J.P., and Simon, J.C. 1998. Life cycle of the cereal aphid Sitiobion avenae F.: polymorphism and comparison of life history traits associated with sexuality. Ecological Entomology, 23: 123132. doi:10.1046/j.1365-2311.1998.00113.x.CrossRefGoogle Scholar
Dixon, A.F.G., and Glen, D. 1971. Morph determination in the bird cherry-oat aphid, Rhopalosiphum padi L. A nnals of Applied Biology, 68: 1121. doi:1 0.1111/j.1744-7348.1971.tb04633.x.Google Scholar
Erlykova, N. 2003. Inter- and intraclonal variability in the photoperiodic response and fecundity in the pea aphid Acyrthosiphom pisum (Hemiptera:Aphididae). European Journal of Entomology, 100: 3137.CrossRefGoogle Scholar
Halkett, F., Harrington, R., Hullé, M., Kindlemann, P., Menu, F., Rispe, C., and Plantegenest, M. 2004. Dynamics of production of sexual forms in aphids: theoretical and experimental evidence for adaptive “coin-flipping” plasticity. The American Naturalist, 163: 112125. doi:10.1086/383618.CrossRefGoogle ScholarPubMed
Hardie, J., and Vaz Nunes, M. 2001. Aphid photoperiodic clocks. Journal of Insect Physiology, 47: 821832. doi:10.1016/S0022-1910(01)00055-5.CrossRefGoogle Scholar
Hullé, M., Maurice, D., Rispe, C., and Simon, J.C. 1999. Clonal variability in sequences of morph production during the transition from parthenogenetic to sexual reproduction in the aphid Rhopalosiphum padi (Sternorrhyncha: Aphididae). European Journal of Entomology, 96: 125134.Google Scholar
Kenten, J. 1955. The effect of photoperiod and temperature on reproduction in Acyrthosiphon pisum (Harris) and on the forms produced. Bulletin of Entomological Research, 46: 599624. doi:10.1017/S0007485300039572.Google Scholar
Lamb, R.J., and MacKay, P.A. 1997. Photoperiodism and life plasticity of an aphid, Macrosiphum euphorbiae (Thomas), from central North America. The Canadian Entomologist, 129: 10351048. doi:10.4039/Ent1291035-6.CrossRefGoogle Scholar
Lamb, R.J. and Pointing, P.J. 1972. Sexual morph determination in the aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 18: 20292042. doi:10.1016/0022-1910(72)90170-9.CrossRefGoogle Scholar
Lamb, R.J. and Pointing, P.J. 1975. The reproductive sequence and sex determination in the aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 21: 14431446. doi:10.1016/0022-1910(75)90205-X.CrossRefGoogle Scholar
Lamb, R.J., MacKay, P.A., and Gerber, G.H. 1987. Are development and growth of pea aphids, Acyrthosiphon pisum, in North America adapted to local temperatures? Oecologia, 72: 170177. doi:10.1007/BF00379263.CrossRefGoogle ScholarPubMed
Lamb, R.J., Wise, I.L., and MacKay, P.A. 1997. Photoperiodism and seasonal abundance of an aphid, Macrosiphum euphorbiae (Thomas), in oil-seed flax. The Canadian Entomologist, 129: 10491058. doi:10.4039/Ent1291049-6.CrossRefGoogle Scholar
Leather, S.R. 1993. Overwintering in six arable aphid pests: a review with particular relevance to pest management. Journal of Applied Entomology, 116: 217233. doi:10.1111/j.1439-0418.1993.tb01192.x.CrossRefGoogle Scholar
Lees, A.D. 1959. The rôle of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton – I. The influence of these factors on apterous virginoparae and their progeny. Journal of Insect Physiology, 3: 92117. doi:10.1016/0022-1910(59)90024-1.CrossRefGoogle Scholar
Lees, A.D. 1963. The rôle of photoperiod and temperature in the determination of parthenogenetic and sexual forms in the aphid Megoura viciae Buckton – III. Further properties of the maternal switching mechanism in apterous aphids. Journal of Insect Physiology, 9: 153164. doi:10.1016/0022-1910(63)90067-2.CrossRefGoogle Scholar
Lees, A.D. 1966. The control of polymorphism in aphids. Advances in Insect Physiology, 3: 207277. doi:10.1016/S0065-2806(08)60188-5.CrossRefGoogle Scholar
Lees, A.D. 1973. Photoperiodic time measurement in the aphid Megoura viciae. Journal of Insect Physiology, 19: 22792316. doi:10.1016/0022-1910(73)90237-0.CrossRefGoogle Scholar
Lees, A.D. 1986. Some effects of temperature on the hour glass photoperiod timer in the aphid Megoura viciae. Journal of Insect Physiology, 32: 7989. doi:10.1016/0022-1910(86)90160-5.CrossRefGoogle Scholar
Lees, A.D. 1989. The photoperiodic responses and phenology of an English strain of the pea aphid Acyrthosiphon pisum. Ecological Entomology, 14: 6978. doi:10.1111/j.1365-2311.1989.tb00755.x.Google Scholar
Le Trionnaire, G., Hardie, J., Jauber-Possamai, S., Simon, J.C., and Tagu, D. 2008. Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects. Biology of the Cell, 100: 441451. PMID:18627352 doi:10.1042/BC20070135.CrossRefGoogle ScholarPubMed
MacGillivray, M.E., and Anderson, G.B. 1964. The effect of photoperiod and temperature on the production of gamic and agamic forms in Macrosiphum euphorbiae (Thomas). Canadian Journal of Zoology, 42: 491510. doi:10.1139/z64-042.CrossRefGoogle Scholar
MacKay, P.A. 1987. Production of sexual and asexual morphs and changes in reproductive sequence associated with photoperiod in the pea aphid, Acyrthosiphon pisum (Harris). Canadian Journal of Zoology, 65: 26022606. doi:10.1139/z87-394.CrossRefGoogle Scholar
MacKay, P.A. 1989. Clonal variation in sexual morph production in Acyrthosiphon pisum (Homoptera: Aphididae). Environmental Entomology, 18: 558562.Google Scholar
MacKay, P.A., Lamb, R.J., and Hughes, M.A. 1989. Sexual and fundatrix-like morphs in asexual Australian populations of the pea aphid (Homoptera: Aphididae). Environmental Entomology, 18: 111117.Google Scholar
Marcovitch, S. 1924. The migration of the Aphididae and the appearance of the sexual forms as affected by the relative length of daily light exposure. Journal of Agricultural Research, 27: 513522.Google Scholar
Moran, N.A. 1992. The evolutionary maintenance of alternative phenotypes. The American Naturalist, 139: 971989. doi:10.1086/285369.CrossRefGoogle Scholar
Reeleder, J.D. 1978. Aspects of the photoperiod response of the pea aphid Acyrthosiphon pisum (Harris). M.Sc. thesis, University of Windsor, Windsor, Ontario.Google Scholar
Saunders, D.S. 2009. Circadian rhythms and the evolution of photoperiodic timing in insects. Physiological Entomology, 34: 301308. doi:10.1111/j.1365-3032.2009.00699.x.Google Scholar
Sharma, M.L., Larrivée, M.J., and Thériault, L.M. 1973. Effets de la photopériode et des temperatures moyennes de 15°C sur la fécondité et la production des sexuées chez le puceron du pois, Acyrthosiphon pisum (Aphididae: Homoptera). The Canadian Entomologist, 105: 947956. doi:10.4039/Ent105947-7.CrossRefGoogle Scholar
Sharma, M.L., Larrivée, M.J., and Thériault, L.M. 1974. Production des formes sexuées chez Acyrthosiphon pisum (Aphididae: Homoptera), sur les pois de variété Lincoln dans les conditions expérimentales de l'extérieur. The Canadian Entomologist, 106: 307313. doi: 10.4039/Ent 106307-3.Google Scholar
Sharma, M.L., Larrivée, M.J., and Thériault, L.M. 1975. Séquences de descendance des formes sexuées chez le puceron du pois Acyrthosiphon pisum (Aphididae: Homoptera) en relation avec la durée des photopériodes. The Canadian Entomologist, 107: 10631067. doi:10.4039/Ent1071063-10.CrossRefGoogle Scholar
Smith, M.A.H., and MacKay, P.A. 1989. Seasonal variation in the photoperiodic responses of a pea aphid population: evidence for long-distance movements between populations. Oecologia, 81: 160165.CrossRefGoogle ScholarPubMed
Smith, M.A.H., and MacKay, P.A. 1990. Latitudinal variation in the photoperiodic responses of populations of pea aphid (Homoptera: Aphididae). Environmental Entomology, 19: 618624.CrossRefGoogle Scholar
Strathdee, A.T., Bale, J.S., Block, W.C., Coulson, S.J., Hodkinson, I.D., and Webb, N.R. 1993. Effects of temperature elevation on a field population of Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen. Oecologia, 96: 457465. doi:10.1007/BF00320502.CrossRefGoogle ScholarPubMed
Tauber, M.J., Tauber, C.A., and Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, New York.Google Scholar
Tsitsipis, J.A., and Mittler, T.E. 1977. Influence of temperature and daylength on the production of males by Aphis fabae. Entomologia Experimentalis et Applicata, 21: 229237. doi:10.1007/BF00291784.Google Scholar
Vaz Nunes, M., and Hardie, J. 1999. The effect of temperature on the photoperiodic ‘counters’ for female morph and sex determination in two clones of the black bean aphid, Aphis fabae. Physiological Entomology, 24: 339345. doi:10.1046/j.1365-3032.1999.00148.x.CrossRefGoogle Scholar
Vaz Nunes, M., and Hardie, J. 2000 a. On critical night lengths and temperature compensation in the photoperiodic response of two geographical clones of the black bean aphid, Aphis fabae. Physiological Entomology, 25: 303308. doi:10.1046/j.1365-3032.2000.00196.x.Google Scholar
Vaz Nunes, M., and Hardie, J. 2000 b. The effect of temperature on the photoperiodic ‘clock’ and ‘counter’ of a Scottish clone of the vetch aphid, Megoura viciae. Journal of Insect Physiology, 46: 727733. PMID:10742521 doi:10.1016/S0022-1910(99)00161-4.Google Scholar
Ward, S.A., Leather, S.R., and Dixon, A.F.G. 1984. Temperature prediction and the timing of sex in aphids. Oecologia, 62: 230233. doi:10.1007/BF00379018.CrossRefGoogle ScholarPubMed