Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T07:21:56.495Z Has data issue: false hasContentIssue false

DOSE-DEPENDENT AND SPECIES-SPECIFIC RESPONSES OF PINE BARK BEETLES (COLEOPTERA: SCOLYTIDAE) TO MONOTERPENES IN ASSOCIATION WITH PHEROMONES

Published online by Cambridge University Press:  31 May 2012

Daniel R. Miller*
Affiliation:
Centre for Environmental Biology, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
John H. Borden
Affiliation:
Centre for Environmental Biology, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
*
1 Author to whom all correspondence should be sent at the following address: Forestry Sciences Laboratory, Southern Research Station, USDA Forest Service, 320 Green Street, Athens, Georgia 30602-2044, United States (E-mail: dmiller/srs-athens@fs.fed.us).

Abstract

Monoterpenes affected the attraction of three sympatric species of bark beetles (Coleoptera: Scolytidae) to pheromone-baited multiple-funnel traps in stands of lodgepole pine. Catches of Ips pini (Say) in traps baited with its pheromone, ipsdienol, were directly related to the release rates of 3-carene, β-phellandrene, and β-pinene. Catches of Dendroctonus ponderosae Hopkins in traps baited with exo-brevicomin and cis- and trans-verbenol were directly related to the release rates of 3-carene, myrcene, and β-phellandrene. Ips latidens (LeConte) exhibited preferences for traps baited with ipsenol and β-phellandrene or β-pinene but not in a dose-dependent fashion. Catches of I. latidens in traps baited with its pheromone, ipsenol, were inversely proportional to the release rates of 3-carene, myrcene, and terpinolene. Similarly, catches of I. pini in traps baited with its pheromone, ipsdienol, were inversely proportional to the release rates of myrcene and terpinolene. These results demonstrate a degree of species specificity among three phloeophagous species with respect to preferred host odours. The bark beetle predators–associates Lasconotus complex LeConte (Coleoptera: Colydiidae) and Corticeus Piller and Mitterpacher sp. (Coleoptera: Tenebrionidae) demonstrated some measure of specificity to monoterpenes in their responses to ipsdienol-baited funnel traps. γ-Terpinene increased attraction of L. complex but had no effect on Corticeus sp., whereas α- and β-pinene increased attraction of Corticeus sp. but had no effect on L. complex.

Résumé

La présence de monoterpènes a modifié l’attirance de pièges à entonnoirs multiples garnis de phéromones pour trois espèces sympatriques de scolytes des pins (Coleoptera : Scolytidae) dans une forêt de pins à feuilles tordues. Les récoltes d’Ips pini (Say) dans les pièges garnis de la phéromone même de l’insecte, l’ipsdienol, étaient reliées directement aux taux de libération de 3-carène, de β-pheilandrène et de β-pinène. Les récoltes de Dendroctonus ponderosae Hopkins dans les pièges garnis d’exo-brévicomine et de cis- et trans-verbenol étaient en corrélation avec les taux de libération de 3-carène, de myrcène et de β-pheilandrène. Ips latidens (LeConte) a manifesté une préférence pour les pièges garnis d’ipsénol et de β-pheilandrène ou β-pinène, mais indépendamment de la dose. Les récoltes d’I. latidens dans les pièges garnis de la phéromone de cet insecte, l’ipsénol, se sont avérées inversement proportionnelles aux taux de libération de 3-carène, de myrcène et de terpinolène. De même, les captures d’I. pini dans les pièges garnis de sa phéromone, l’ipsdiénol, étaient inversement proportionnelles aux taux de libération de myrcène et de terpinolene. Ces résultats démontrent l’existence d’une certaine spécificité chez chacune de ces trois espèces phloéophages quant aux odeurs d’hôtes qu’elles préfèrent. Les prédateurs/associés des scolytes Lasconotus complex LeConte (Coleoptera : Colydiidae) et Corticeus Piller et Mitterpacher sp. (Coleoptera : Tenebrionidae) ont démontré un certain degré de spécificité aux monoterpènes dans leurs réactions aux pièges à entonnoirs garnis d’ipsdiénol. L’γ-terpinène a augmenté l’attirance des pièges pour L. complex mais n’a pas eu d’effet sur Corticeus sp., alors que l’α-pinène et la β-pinène ont augmenté l’attirance des pièges pour Corticeus sp., mais pas pour L. complex.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, J. 1982. Natural selection and communication among bark beetles. Florida Entomologist 65: 1732CrossRefGoogle Scholar
Angst, M.E., Lanier, G.N. 1979. Electroantennogram responses of two populations of Ips pini (Coleoptera: Scolytidae) to insect-produced and host tree compounds. Journal of Chemical Ecology 5: 131–40CrossRefGoogle Scholar
Atkins, M.D. 1968. Scolytid pheromones — ready or not. The Canadian Entomologist 100: 1115–17CrossRefGoogle Scholar
Berryman, A.A. 1969. Responses of Abies grandis to attack by Scolytus ventralis (Coleoptera: Scolytidae). The Canadian Entomologist 101: 1033–41CrossRefGoogle Scholar
Billings, R.F., Gara, R.I., Hrutfiord, B.F. 1976. Influence of ponderosa pine resin volatiles on the response of Dendroctonus ponderosae to synthetic trans-verbenol. Environmental Entomology 5: 171–9CrossRefGoogle Scholar
Borden, J.H. 1989. Semiochemicals and bark beetle populations: exploitation of natural phenomena by pest management strategists. Holarctic Ecology 12: 501–10Google Scholar
Borden, J.H., Ryker, L.C., Chong, L.J., Pierce, H.D. Jr, Johnston, B.D., Oehlschlager, A.C. 1987. Response of the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae), to five semiochemicals in British Columbia lodgepole pine forests. Canadian Journal of Forest Research 17: 118–28CrossRefGoogle Scholar
Byers, J.A. 1989. Chemical ecology of bark beetles. Experentia 45: 271–83CrossRefGoogle Scholar
Cates, R.G., Alexander, H. 1982. Host resistance and susceptibility. pp. 212–63 in Mitton, J.B., Sturgeon, K.B. (Eds.), Bark beetles in North American conifers. Austin: University of Texas PressGoogle Scholar
Conn, J.E., Borden, J.H., Scott, B.E., Friskie, L.M., Pierce, H.D. Jr, Oehlschlager, A.C. 1983. Semiochemicals for the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) in British Columbia: field trapping studies. Canadian Journal of Forest Research 13: 320–4CrossRefGoogle Scholar
Coyne, J.F., Lott, L.H. 1976. Toxicity of substances in pine oleoresin to southern pine beetle. Journal of the Georgia Entomological Society 11: 301–5Google Scholar
Francke, W., Vité, J.P. 1983. Oxygenated terpenes in pheromone systems of bark beetles. Zeitschrift Angewandte Entomologie 96: 146–56CrossRefGoogle Scholar
Furniss, R.L., Carolin, V.M. 1980. Western forest insects. United States Department of Agriculture Forest Service Miscellaneous Publication 1339Google Scholar
Gijzen, M., Lewinson, E., Savage, T.J., Croteau, R.B. 1993. Conifer monoterpenes. Biochemistry and bark beetle chemical ecology. pp 822in Teranishi, R., Buttery, R.G., Sugisawa, H. (Eds.), Bioactive volatile compounds from plants. Washington: American Chemical SocietyCrossRefGoogle Scholar
Hackwell, G.A. 1973. Biology of Lasconotus subcostulatus (Coleoptera: Colydiidae) with special reference to feeding behavior. Annals of the Entomological Society of America 66: 62–5CrossRefGoogle Scholar
Humphreys, N. 1995. Douglas-fir beetle in British Columbia. Forestry Canada Forest Pest Leaflet 14Google Scholar
Humphreys, N., Safranyik, L. 1993. Spruce beetle. Forestry Canada Forest Pest Leaflet 13Google Scholar
Lanier, G.N., Cameron, E.A. 1969. Secondary sexual characters in the North American species of the genus Ips (Coleoptera: Scolytidae). The Canadian Entomologist 101: 862–70CrossRefGoogle Scholar
Lindgren, B.S. 1983. A multiple-funnel trap for scolytid beetles. The Canadian Entomologist 115: 299302CrossRefGoogle Scholar
Maclauchlan, L.E., Brooks, J.E. 1994. Strategies and tactics for managing the mountain pine beetle, Dendroctonus ponderosae. Kamloops: British Columbia Ministry of ForestsGoogle Scholar
Madden, J.L. 1977. Physiological reactions of Pinus radiata to attack by woodwasp, Sirex noctilio F. (Hymenoptera: Siricidae). Bulletin of Entomological Research 67: 405–26CrossRefGoogle Scholar
Miller, D.R., Borden, J.H. 1985. Life history and biology of Ips latidens (LeConte) (Coleoptera: Scolytidae). The Canadian Entomologist 117: 859–71CrossRefGoogle Scholar
Miller, D.R., Borden, J.H. 1990 a. The use of monoterpenes as kairomones by Ips latidens (LeConte) (Coleoptera: Scolytidae). The Canadian Entomologist 122: 301–7CrossRefGoogle Scholar
Miller, D.R., Borden, J.H. 1990 b. β-Phellandrene: kairomone for pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Journal of Chemical Ecology 16: 2519–31CrossRefGoogle ScholarPubMed
Mirov, N.T. 1961. Composition of gum turpentines of pines. United States Department of Agriculture Forest Service Technical Bulletin 1239Google Scholar
Mustaparta, H., Angst, M.E., Lanier, G.N. 1979. Specialization of olfactory cells to insect- and host-produced volatiles in the bark beetle Ips pini (Say). Journal of Chemical Ecology 5: 109–23CrossRefGoogle Scholar
Parker, D.L., Davis, D.W. 1971. Feeding habits of Corticeus substriatus (Coleoptera: Tenebrionidae) associated with the mountain pine beetle in lodgepole pine. Annals of the Entomological Society of America 64: 293–4CrossRefGoogle Scholar
Payne, T.L. 1983. Nature of insect and host tree interactions. Journal of Applied Entomology 96: 105–9Google Scholar
Pierce, H.D. Jr, Conn, J.E., Oehlschlager, A.C., Borden, J.H. 1987. Monoterpene metabolism in female mountain pine beetles, Dendroctonus ponderosae Hopkins, attacking ponderosa pine. Journal of Chemical Ecology 13: 1455–80CrossRefGoogle ScholarPubMed
Pitman, G.B. 1971. Trans-Verbenol and alpha-pinene: their utility in manipulation of the mountain pine beetle. Journal of Economic Entomology 64: 426–30CrossRefGoogle Scholar
Raffa, K.F., Berryman, A.A. 1983. The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecological Monographs 53: 2749CrossRefGoogle Scholar
Raffa, K.F., Berryman, A.A. 1987. Interacting selective pressures in conifer – bark beetle systems: a basis for reciprocal adaptations? American Naturalist 129: 234–62CrossRefGoogle Scholar
Raffa, K.F., Berryman, A.A., Simasko, J., Teal, W., Wong, B.L. 1985. Effects of grand fir monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae), and its symbiotic fungus. Environmental Entomologist 14: 552–6CrossRefGoogle Scholar
Reid, R.W., Gates, H. 1970. Effect of temperature and resin on hatch eggs of the mountain pine beetle (Dendroctonus ponderosae). The Canadian Entomologist 102: 617–22CrossRefGoogle Scholar
Safranyik, L., Shrimpton, D.M., Whitney, H.S. 1974. Management of lodgepole pine to reduce losses from the mountain pine beetle. Forestry Canada Forestry Technical Report 1Google Scholar
Shrimpton, D.M. 1972. Variation in the extractives from lodgepole pine sapwood and heartwood. Forestry Canada Information Report NOR-X-18Google Scholar
Shrimpton, D.M. 1973. Extractives associated with wound response of lodgepole pine attacked by the mountain pine beetle and associated microorganisms. Canadian Journal of Botany 51: 527–34CrossRefGoogle Scholar
Shrimpton, D.M. 1978. Resistance of lodgepole pine to mountain pine beetle infestations. pp 6476in Berryman, A.A., Amman, G.D., Stark, R.W. (Eds.), Theory and practice of mountain pine beetle management in lodgepole pine forests. Moscow: Idaho University PressGoogle Scholar
Shrimpton, D.M., Watson, J.A. 1971. Response of lodgepole seedlings to inoculation with Europhium clavigerum, a blue stain fungus. Canadian Journal of Botany 49: 373–5CrossRefGoogle Scholar
Smith, R.H. 1963. Toxicity of pine resin vapors to three species of Dendroctonus bark beetles. Journal of Economic Entomology 56: 827–31CrossRefGoogle Scholar
Sokal, R.R., Rohlf, F.J. 1981. Biometry. San Francisco: W.H. Freeman and CompanyGoogle Scholar
Triplehorn, C.A. 1990. Review of the genus Corticeus (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America 83: 287306CrossRefGoogle Scholar
Unger, L. 1993. Mountain pine beetle. Forestry Canada Forest Pest Leaflet 76Google Scholar
Vanderwel, D., Oehlschlager, A.C. 1987. Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. pp 175215in Blomquist, G.J., Prestwich, G.D. (Eds.), Pheromone biochemistry. New York: Academic PressGoogle Scholar
H-A, Volz. 1988. Monoterpenes governing host selection in the bark beetles Hylurgops palliatus and Tomicus piniperda. Entomologia Experimentalis et Applicata 47: 31–5Google Scholar
Whitehead, A.T. 1986. Electroantennogram responses by mountain pine beetles, Dendroctonus ponderosae Hopkins, exposed to selected semiochemicals. Journal of Chemical Ecology 12: 1603–21CrossRefGoogle ScholarPubMed
Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology 27: 411–46CrossRefGoogle Scholar