Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T07:06:22.929Z Has data issue: false hasContentIssue false

A global review of orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), and integrated pest management strategies for its management

Published online by Cambridge University Press:  21 June 2022

S.V. Dufton*
Affiliation:
Beaverlodge Research Station, Agriculture and Agri-Food Canada, Beaverlodge, Alberta, T0H 0C0, Canada
O.O. Olfert
Affiliation:
Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, S7N 0X2, Canada
R.A. Laird
Affiliation:
Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
K.D. Floate
Affiliation:
Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, T1J 4B1, Canada
X. Ge
Affiliation:
Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
J.K. Otani
Affiliation:
Beaverlodge Research Station, Agriculture and Agri-Food Canada, Beaverlodge, Alberta, T0H 0C0, Canada
*
*Corresponding author. Email: shelby.dufton@agr.gc.ca

Abstract

Orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), is a major economic pest of wheat (Triticum aestivum Linnaeus). Here, we review its general biology, history of global spread, economic impact, and methods available to manage its populations. Outbreaks have been reported across the Northern Hemisphere, including in China, Japan, the European Union, the United Kingdom, the United States of America, and Canada. Predators and parasitoids can help attenuate these outbreaks, but control has relied mainly on use of foliar insecticides. Wheat cultivars with resistance to midge conferred by the Sm1 gene became commercially available in 2010 and increasingly are grown to manage midge populations. Forecasting models have been developed in different countries to predict wheat midge populations in an effort to mitigate the degree of economic damage by supporting wheat cultivar selection and to optimise the timing of insecticide applications in conventional wheat production systems. Conservation of natural enemies, insecticides, resistant cultivars, and models combine to form effective integrated pest management programmes for midge, illustrated for Canada with a decision-making flowchart. Future work is needed to address the likely development of midge biotypes with resistance to the Sm1 gene and insecticides currently in use.

Type
Research Paper
Copyright
© The Authors and Her Majesty the Queen in Right of Canada, 2022. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Justin Renkema

References

Abdel-Aal, E.S.M., Hucl, P., Sosulski, F.W., Graf, R., Gillott, C., and Pietrzak, L. 2001. Screening spring wheat for midge resistance in relation to ferulic acid content. Journal of Agricultural and Food Chemistry, 49: 35593566.10.1021/jf010027hCrossRefGoogle ScholarPubMed
Affolter, F. 1990. Structure and dynamics of the parasitoid complex of the wheat midges Sitodiplosis mosellana (Géhin) and Contarinia tritici (Kirby) Cecidomyiidae). International Institute of Biological Control, Delemont, Switzerland. 108 pp.Google Scholar
Agriculture and Horticulture Development Board. 2021. AHDB recommended lists for cereals and oilseeds 2021/22 [online]. Agriculture and Horticulture Development Board, Warwickshire, United Kingdom. Available from https://ahdb.org.uk/knowledge-library/recommended-lists-archive [accessed 29 March 2022].Google Scholar
Alberta Agriculture and Forestry. 2014. Wheat midge forecast 2014 [online]. Available from http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/prm15623/$FILE/lgwheatmidgemap.jpg [accessed 7 April 2020].Google Scholar
Allen, W.R. 1955. The wheat midge, Sitodiplosis mosellana (Géhin). In Annual Conference of Manitoba Agronomists [report]. Winnipeg, Manitoba, Canada. Pp. 2829.Google Scholar
Barker, P.S. and McKenzie, R.I.H. 1996. Possible sources of resistance to the wheat midge in wheat. Canadian Journal of Plant Science, 76: 689695.10.4141/cjps96-120CrossRefGoogle Scholar
Barnes, H.F. 1932. Studies of fluctuations in insect populations. I: The infestation of broadbalk wheat by the wheat blossom midges (Cecidomyiidae). Journal of Animal Ecology, 1: 1231.10.2307/992CrossRefGoogle Scholar
Barnes, H.F. 1941. Studies of fluctuations in insect populations. VIII: The wheat-blossom midges on Broadbalk, 1932–40, with a discussion of the results obtained. Journal of Animal Ecology, 10: 94120.10.2307/1344CrossRefGoogle Scholar
Barnes, H.F. 1952. Studies of fluctuations in insect populations. XII: Further evidence of prolonged larval life in the wheat-blossom midges. Annals of Applied Biology, 39: 370373.10.1111/j.1744-7348.1952.tb01019.xCrossRefGoogle Scholar
Barnes, H.F. 1955. Avoiding wheat blossom midge attacks. Plant Pathology, 4: 147147.10.1111/j.1365-3059.1955.tb00069.xCrossRefGoogle Scholar
Barnes, H.F. 1956. Gall midges of economic importance. Gall midges of cereal crops. Crosby Lockwood and Son, Ltd., London, United Kingdom.Google Scholar
Basedow, T. 1972. Relations between phenology and food-plants in the wheat gall-midges Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin). Zeitschrift für Angewandte Entomologie, 71: 359367.10.1111/j.1439-0418.1972.tb01760.xCrossRefGoogle Scholar
Basedow, T. 1973. The influence of predatory arthropods of the soil surface on the abundance of phytophagous insects in agriculture. Pedobiologia, 13: 410422.Google Scholar
Basedow, T. 1977a. The effects of temperature and precipitation on diapause and phenology of the wheat blossom midges Contarinia tritici and Sitodiplosis mosellana (Diptera: Cecidomyiidae). Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, 104: 302326.Google Scholar
Basedow, T. 1977b. The susceptibility of different varieties of spring wheat to infestation by both species of wheat gall-midge (Diptera: Cecidomyiidae). Anzeiger fur Schadlingskunde Pflanzenschutz Umweltschutz, 50: 129131.10.1007/BF02156799CrossRefGoogle Scholar
Basedow, T. 1980. Forecasting the attack by wheat blossom midges Contarinia tritici and Sitodiplosis mosellana (Diptera: Cecidomyiidae). I. The critical numbers of larvae in the soil. Zeitschrift fuer Angewandte Entomologie, 90: 292299.10.1111/j.1439-0418.1980.tb03529.xCrossRefGoogle Scholar
Basedow, T. and Gillich, H. 1982. Investigations on forecasting the occurrence of the wheat blossom midges Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin) (Dipt., Cecidomyiidae). II. Factors that can prevent outbreaks of the midges. Anzeiger fur Schadlingskunde Pflanzenschutz Umweltschutz, 55: 8489.10.1007/BF01907606CrossRefGoogle Scholar
Basedow, T. and Schuette, F. 1982. The population dynamics of the wheat blossom midges Contarinia tritici and Sitodiplosis mosellana (Diptera: Cecidomyiidae) in two northern German wheat-growing areas from 1969–1976. Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, 109: 3382.Google Scholar
Basedow, T. and Schutte, F. 1973. New investigations on oviposition, economic damage threshold, and control of the wheat-blossom gall-midges (Diptera: Cecidomyiidae). Zeitschrift für Angewandte Entomologie, 73: 238251.10.1111/j.1439-0418.1973.tb02288.xCrossRefGoogle Scholar
Basedow, T. and Schutte, F. 1974. The differential susceptibility of some varieties of winter wheat to the two species of wheat gall-midges Contarinia tritici (Kirby) and Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 26: 122125.Google Scholar
Berzonsky, W.A., Ding, H., Haley, S.D., Harris, M.O., Lamb, R.J., McKenzie, R.I.H., et al. 2003. Breeding wheat for resistance to insects. Plant Breeding Reviews, 22: 221296.Google Scholar
Blake, N.K., Stougaard, R.N., Bohannon, B., Weaver, D.K., Heo, H.Y., Lamb, P.F., et al. 2014. Registration of ‘Egan’ wheat with resistance to orange wheat blossom midge. Journal of Plant Registrations, 8: 298302.10.3198/jpr2014.04.0022crcCrossRefGoogle Scholar
Blake, N.K., Stougaard, R.N., Weaver, D.K., Sherman, J.D., Lanning, S.P., Naruoka, Y., et al. 2011. Identification of a quantitative trait locus for resistance to Sitodiplosis mosellana (Géhin), the orange wheat blossom midge, in spring wheat. Plant Breeding, 130: 2530.10.1111/j.1439-0523.2010.01809.xCrossRefGoogle Scholar
Borkent, A. 1989. A review of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in Canada. Technical Bulletin 1989–5E. Biosystematics Research Centre, Research Branch, Agriculture Canada, Ottawa, Ontario, Canada.10.5962/bhl.title.63026CrossRefGoogle Scholar
Brederlow, H. 1966. On the occurrence of the red wheat gall-midge (S. mosellana) on rye in the Weser-Ems district. Gesunde Pflanzen, 18: 112115.Google Scholar
Brook, H. and Cutts, M. (editors). 2019. Crop Protection 2019 [online]. Publications Office, Alberta Agriculture and Forestry, Edmonton, Alberta, Canada. Available from https://open.alberta.ca/dataset/1be9589f-31f6-4841-a6b8-34b32e8e19b4/resource/753672e4-77b8-4a70-8cbd-08e42077a9d1/download/606-1-2019.pdf [accessed 15 January 2022].Google Scholar
Bruce, T.J., Hooper, A.M., Ireland, L., Jones, O.T., Martin, J.L., Smart, L.E., et al. 2007. Development of a pheromone trap monitoring system for orange wheat blossom midge, Sitodiplosis mosellana, in the UK. Pest Management Science, 63: 4956.10.1002/ps.1307CrossRefGoogle ScholarPubMed
Bruce, T.J. and Smart, L.E. 2009. Orange wheat blossom midge, Sitodiplosis mosellana, management. Outlooks on Pest Management, 20: 8992.10.1564/20apr12CrossRefGoogle Scholar
Canadian Grain Commission. 2015. Cereal varieties: 2015 insured commercial acres. Canadian Grain Commission Statistics and Business Information, Winnipeg, Manitoba, Canada.Google Scholar
Canadian Grain Commission. 2016. Cereal varieties: 2016 insured commercial acres. Canadian Grain Commission Statistics and Business Information, Winnipeg, Manitoba, Canada.Google Scholar
Canadian Grain Commission. 2017. Cereal varieties: 2017 insured commercial acres. Canadian Grain Commission Statistics and Business Information, Winnipeg, Manitoba, Canada.Google Scholar
Canadian Grain Commission. 2018. Cereal varieties: 2018 insured commercial acres. Canadian Grain Commission Statistics and Business Information, Winnipeg, Manitoba, Canada.Google Scholar
Canadian Grain Commission. 2019. Cereal varieties: 2019 insured commercial acres. Canadian Grain Commission Statistics and Business Information, Winnipeg, Manitoba, Canada.Google Scholar
Canadian Grain Commission. 2020. Cereal varieties: 2020 insured commercial acres. Canadian Grain Commission Statistics and Business Information, Winnipeg, Manitoba, Canada.Google Scholar
Canadian Grain Commission. 2021. Primary grade determinants table for Canada western red spring (CWRS) wheat [online]. Canadian Grain Commission, Winnipeg, Manitoba, Canada. Available from https://www.grainscanada.gc.ca/en/grain-quality/official-grain-grading-guide/04-wheat/primary-grade-determinants/cwrs-en.html [accessed 3 December 2021].Google Scholar
CCM Data & Business Intelligence. 2019. 10 highly toxic pesticides to face withdrawal from the Chinese market within five years [online]. Available from http://www.cnchemicals.com/Press/90384-CCM_Editor_Pick.html [accessed 14 January 2021].Google Scholar
Chavalle, S., Buhl, P.N., Censier, F., and De Proft, M. 2015a. Comparative emergence phenology of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), and its parasitoids (Hymenoptera: Pteromalidae and Platygastridae) under controlled conditions. Crop Protection, 76: 114120.10.1016/j.cropro.2015.06.016CrossRefGoogle Scholar
Chavalle, S., Buhl, P.N., San Martin y Gomez, G., and De Proft, M. 2018. Parasitism rates and parasitoid complexes of the wheat midges, Sitodiplosis mosellana, Contarinia tritici and Haplodiplosis marginata . BioControl, 63: 641653.10.1007/s10526-018-9899-zCrossRefGoogle Scholar
Chavalle, S., Censier, F., San Martin y Gomez, G., and De Proft, M. 2015b. Protection of winter wheat against orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae): efficacy of insecticides and cultivar resistance. Pest Management Science, 71: 783790.10.1002/ps.3855CrossRefGoogle ScholarPubMed
Chavalle, S., Censier, F., San Martin y Gomez, G., and De Proft, M. 2019. Effect of trap type and height in monitoring the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) and its parasitoid, Macroglenes penetrans (Kirby) (Hymenoptera: Pteromalidae). Crop Protection, 116: 101107.10.1016/j.cropro.2018.10.010CrossRefGoogle Scholar
Chavalle, S., Jacquemin, G., and De Proft, M. 2017. Assessing cultivar resistance to Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) using a phenotyping method under semi-field conditions. Journal of Applied Entomology, 141: 780785.10.1111/jen.12398CrossRefGoogle Scholar
Chavalle, S., Jansen, J.P., San Martin y Gomez, G., and De Proft, M. 2015c. Toxicity of several fungicides for orange wheat blossom midge, Sitodiplosis Mosellana (Gehin) (Diptera: Cecidomyiidae). Communications in Agricultural and Applied Biological Sciences, 80: 101110.Google Scholar
Chen, H., Li, Y., Gao, H., Xue, G., Xiao, Z., Liu, Y., and Wu, J. 2011a. Relationship between wheat yield loss and wheat midge, Sitodiplosis mosellana (Géhin). Acta Agriculturae Boreali-occidentalis Sinica, 20: 3740.Google Scholar
Chen, H., Wu, Y., Miao, J., Yu, Z., Duan, Y., Jiang, Y., and Du, Z. 2011b. The amount and sex ratios of trapped wheat orange midge Sitodiplosis mosellana adults by black-light lamp. Chinese Journal of Applied Entomology, 48: 17701774.Google Scholar
Cheng, W., Li, X., Li, J., Li, Q., and Wang, Y. 2000. Studies on controlling of botanical insecticides to wheat blossom midge. Acta Agriculturae Boreali-occidentalis Sinica, 9: 4144.Google Scholar
Cheng, W., Li, X., Li, J., and Xin, Z. 2003. Status and prospect of studies on wheat blossom midge resistance of wheat varieties. Journal of Triticeae Crops, 23: 132135.Google Scholar
Chinese Ministry of Agriculture. 1989. A new pesticide manual. Chinese Agricultural Publisher, Beijing, China.Google Scholar
Chinese Ministry of Agriculture. 1991. China agriculture year book. Chinese Agricultural Publisher, Beijing, China.Google Scholar
Clark, J.A., Love, H.H., and Gaines, E.F. 1927. Registration of standard wheat varieties. Journal of the American Society of Agronomy, 19: 920922.10.2134/agronj1927.00021962001900110011xCrossRefGoogle Scholar
Daamen, R.A. and Stol, W. 1993. Surveys of cereal diseases and pests in the Netherlands. 6: Occurrence of insect pests in winter wheat. Netherlands Journal of Plant Pathology, 99: 5156.10.1007/BF03041395CrossRefGoogle Scholar
Dawson, J.W.S. 1850. Notice of specimens of the wheat midge from Nova Scotia. Annals and Magazine of Natural History, 5: 152154.10.1080/03745486009494903CrossRefGoogle Scholar
Dexter, J.E., Preston, K.R., Cooke, L.A., Morgan, B.C., Kruger, J.E., Kilborn, R.H., and Elliott, R.H. 1987. The influence of orange wheat blossom midge (Sitodiplosis mosellana Géhin) damage on hard red spring wheat quality and the effectiveness of insecticide treatments. Canadian Journal of Plant Science, 67: 697712.10.4141/cjps87-097CrossRefGoogle Scholar
Ding, H., Lamb, R.J., and Ames, N. 2000. Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana . Journal of Chemical Ecology, 26: 969985.10.1023/A:1005412309735CrossRefGoogle Scholar
Ding, H.J. and Guo, Y.Y. 1993. Studies on the relationship between the morphology of wheat ear and resistance to wheat midge. Acta Phytophylacica Sinica, 20: 1924.Google Scholar
Doane, J.F., Braun, M.P., Olfert, O.O., Affolter, F., and Carl, K. 2001. Sitodiplosis mosellana (Géhin), orange wheat blossom midge (Diptera: Cecidomyiidae). Chapter 50. In Biological control programmes in Canada 1981–2000. Edited by P.G. Mason and J.T. Huber. Invasive Species Compendium. Centre for Agriculture and Bioscience International, Wallingford, United Kingdom. Pp. 246249.Google Scholar
Doane, J.F., Mukerji, M.K., and Olfert, O.O. 2000. Sampling distribution and sequential sampling for subterranean stages of orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in spring wheat. Crop Protection, 19: 427434.10.1016/S0261-2194(00)00035-1CrossRefGoogle Scholar
Doane, J.F. and Olfert, O.O. 2008. Seasonal development of wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in Saskatchewan, Canada. Crop Protection, 27: 951958.10.1016/j.cropro.2007.11.016CrossRefGoogle Scholar
Doane, J.F., Olfert, O.O., Elliott, R.H., Hartley, S., and Meers, S. 2013. Sitodiplosis mosellana (Géhin), orange wheat blossom midge (Diptera: Cecidomyiidae). Chapter 39. In Biological control programmes in Canada 2001–2012. Edited by P.G. Mason and D.R. Gillespie. Invasive Species Compendium. Centre for Agriculture and Bioscience International, Wallingford, United Kingdom. Pp. 272276.Google Scholar
Duan, A., Liu, S., Zhang, Z., Liu, C., and Wu, Y. 2011. Control effect of five pesticides against Sitodiplosis mosellana in different growth stages of wheat. Journal of Henan Agricultural Sciences, 40: 9799.Google Scholar
Duan, Y., Jiang, Y.L., Miao, J., Gong, Z.J., Li, T., Wu, Y.Q., and Luo, L.Z. 2013a. Occurrence, damage and control of the wheat midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae), in China. Acta Entomologica Sinica, 56: 13591366.Google Scholar
Duan, Y., Wu, Y.Q., Luo, L.Z., Miao, J., Gong, Z.J., Jiang, Y.L., and Li, T. 2013b. Genetic diversity and population structure of Sitodiplosis mosellana in northern China. PLOS One, 8: 112.10.1371/journal.pone.0078415CrossRefGoogle ScholarPubMed
Dufton, S.V. 2019. Assessing the impacts of natural enemies and canopy structure on orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae), in the Peace River region of Alberta. Master’s thesis. University of Lethbridge, Lethbridge, Alberta, Canada.Google Scholar
Dufton, S.V., Laird, R.A., Floate, K.D., and Otani, J.K. 2021. Diversity, rate, and distribution of wheat midge parasitism in the Peace River region of Alberta, Canada. The Canadian Entomologist, 153: 461469. https://doi.org/10.4039/tce.2021.7.CrossRefGoogle Scholar
Echegaray, E.R., Stougaard, R.N., and Bohannon, B. 2016. First record of Euxestonotus error (Hymenoptera: Platygastridae) in the Pacific Northwest, United States of America. The Canadian Entomologist, 148: 616618. https://doi.org/10.4039/tce.2016.8.CrossRefGoogle Scholar
Ecological Framework of Canada. 2021. Prairies ecozone [online]. Available from http://www.ecozones.ca/english/zone/Prairies/ecoregions.html [accessed 24 October 2021].Google Scholar
Elliott, R.H. 1988a. Evaluation of insecticides for protection of wheat against damage by the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 120: 615626. https://doi.org/10.4039/Ent120615-7.CrossRefGoogle Scholar
Elliott, R.H. 1988b. Factors influencing the efficacy and economic returns of aerial sprays against the wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 120: 941954. https://doi.org/10.4039/Ent120941-11.CrossRefGoogle Scholar
Elliott, R.H. and Mann, L.W. 1996. Susceptibility of red spring wheat, Triticum aestivum L. cv. Katepwa, during heading and anthesis to damage by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 128: 367375. https://doi.org/10.4039/Ent128367-3.CrossRefGoogle Scholar
Elliott, R.H. and Mann, L.W. 1997. Control of wheat midge, Sitodiplosis mosellana (Gehin), at lower chemical rates with small-capacity sprayer nozzles. Crop Protection, 16: 235242.10.1016/S0261-2194(96)00100-7CrossRefGoogle Scholar
Elliott, R.H., Mann, L.W., Braun, M., and Olfert, O.O. 2002. Integrated management of crop pests: abundance of wheat midge and its parasite in different management systems. In Proceedings of Soils and Crops Workshop, 2002, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. Available from https://harvest.usask.ca/bitstream/handle/10388/9735/B.%20Elliott%20et%20al.%2c%202002.pdf?sequence=1&isAllowed=y [accessed 15 January 2022].Google Scholar
Elliott, R.H., Mann, L.W., and Olfert, O.O. 2009. Calendar and degree-day requirements for emergence of adult wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Saskatchewan, Canada. Crop Protection, 28: 588594.10.1016/j.cropro.2009.03.005CrossRefGoogle Scholar
Elliott, R.H., Olfert, O.O., and Hartley, S. 2011. Management practices for wheat midge, Sitodiplosis mosellana (Géhin). Prairie Soil & Crops, 4: 813.Google Scholar
Ellis, S.A., Bruce, T.J.A., Smart, L.E., Martin, J.A., Snape, J., and Self, M. 2009. Integrated management strategies for varieties tolerant and susceptible to wheat blossom midge. Home Grown Cereals Authority, London, United Kingdom.Google Scholar
El-Wakeil, N.E., Abdel-Moniem, A.S.H., Gaafar, N., and Volkmar, C. 2013. Effectiveness of some insecticides on wheat blossom midges in winter wheat. Gesunde Pflanzen, 65: 713.10.1007/s10343-012-0289-7CrossRefGoogle Scholar
European and Mediterranean Plant Protection Organisation Secretariat. 2018. Sitodiplosis mosellana datasheet (SITDMO). Worldwide distribution for Sitodiplosis mosellana [online]. European and Mediterranean Plant Protection Organisation Global Database. Available from https://gd.eppo.int/taxon/SITDMO/distribution [accessed 7 April 2020].Google Scholar
European Commission. 2020. Chlorpyrifos & Chlorpyrifos-methyl [online]. Directorate-General for Health and Food Safety, European Commission, Brussels, Belgium. Available from https://ec.europa.eu/food/plants/pesticides/approval-active-substances/renewal-approval/chlorpyrifos-chlorpyrifos-methyl_en [accessed 21 October 2021].Google Scholar
Fauna Europaea. 2018. Sitodiplosis mosellana (Géhin, 1857) [online]. Fauna Europaea, Museum für Naturkunde Berlin, Berlin, Germany. Available from https://fauna-eu.org/cdm_dataportal/taxon/5edf1e95-0a69-4803-8f77-bc6cda1c4d4e [accessed 7 April 2020].Google Scholar
Felt, E.P. 1912. Observations on the identity of the wheat midge. Journal of Economic Entomology, 5: 286289.10.1093/jee/5.3.286CrossRefGoogle Scholar
Felt, E.P. 1921. 35th Report of the State Entomologist, 1921. Albany, New York, United States of America.Google Scholar
Fitch, A. 1856. Insects infesting grain crops. In Report on the noxious, beneficial and other insects of the state of New York. Volume 2. C. Van Benthuysen, Albany, New York, United States of America. Pp. 745805.Google Scholar
Fletcher, J. 1902. Report of the Entomologist and Botanist (Jas. Fletcher, LL.D. F.R.S.C., F.L.S.) 1901. In Appendix to the report of the Minister of Agriculture: Experimental Farms reports for 1901. Sessional Paper No. 16. Government of Canada, Ottawa, Ontario, Canada. P. 212.Google Scholar
Floate, K.D., Bérubé, J., Boiteau, G., Dosdall, L., Van Frankenhuyzen, K., Gillespie, D., et al. 2002. Pesticides and biological control. Centre for Agriculture and Bioscience International, Wallingford, United Kingdom.Google Scholar
Floate, K.D., Doane, J.F., and Gillott, C. 1990. Carabid predators of the wheat midge (Diptera: Cecidomyiidae) in Saskatchewan. Environmental Entomology, 19: 15031511.10.1093/ee/19.5.1503CrossRefGoogle Scholar
Floate, K.D., Elliott, R.H., Doane, J.F., and Gillott, C. 1989. Field bioassay to evaluate contact and residual toxicities of insecticides to carabid beetles (Coleoptera: Carabidae). Journal of Economic Entomology, 82: 15431547.10.1093/jee/82.6.1543CrossRefGoogle Scholar
Fox, S.L., McKenzie, R.I.H., Lamb, R.J., Wise, I.L., Smith, M.A.H., Humphreys, D.G., et al. 2010. Unity hard red spring wheat. Canadian Journal of Plant Science, 90: 7178.10.4141/CJPS09024CrossRefGoogle Scholar
Fox, S.L., Thomas, J.B., Wise, I.L., Smith, M.A.H., Humphreys, D.G., Brown, P.D., et al. 2009. Waskada hard red spring wheat. Canadian Journal of Plant Science, 89: 929936.10.4141/CJPS08222CrossRefGoogle Scholar
Gaafar, N.M.F. 2010. Wheat midges and thrips information system: monitoring and decision making in central Germany. Doctoral thesis. Martin-Luther-Univesität, Halle–Wittenberg, Germany.Google Scholar
Gaafar, N., Volkmar, C., Coster, H., and Spilke, J. 2011. Susceptibility of winter wheat cultivars to wheat ear insects in central Germany. Gesunde Pflanzen, 62: 107115.10.1007/s10343-010-0227-5CrossRefGoogle Scholar
Gahan, A.B. 1933. The serphoid and chalcidoid parasites of the Hessian fly. Miscellaneous Publication No 174. United States Department of Agriculture, Washington, D.C., United States of America.CrossRefGoogle Scholar
Gao, B., Zhang, Z., Li, L., Kaziem, A., He, Z., Yang, Q., et al. 2019. Stereoselective environmental behavior and biological effect of the chiral organophosphorus insecticide isofenphos methyl. Science of the Total Environment, 648: 703710.10.1016/j.scitotenv.2018.08.182CrossRefGoogle Scholar
Gao, B., Zhao, S., Shi, H., Zhang, Z., Li, L., He, Z., et al. 2020. Enantioselective disposition and metabolic products of isofenphos-methyl in rats and the hepatotoxic effects. Environment International, 143: 19.10.1016/j.envint.2020.105940CrossRefGoogle ScholarPubMed
Gao, J., Wang, H., and Wang, C. 2009. Investigation and analysis on the transmission of wheat blossom midge by cross-operating of combine harvester in Hebei province. Chinese Plant Protection, 29: 58.Google Scholar
Gao, P., Liu, S., Zhu, Z., and Sun, D. 1992. Lindane powder to control wheat midge. Pesticide, 31: 43.Google Scholar
Gao, Y., Zhang, Y., Zhang, N., Niu, L., Zheng, W., and Yuan, H. 2013. Primary studies on spray droplets distribution and control effects of aerial spraying using unmanned aerial vehicle (UAV) against wheat midge. Crops, 2: 139142.Google Scholar
Gavloski, J. 2019. Wheat midge [online]. Manitoba Agriculture and Resource Development, Carman, Manitoba, Canada. Available from https://www.gov.mb.ca/agriculture/crops/insects/print,wheat-midge.html [accessed 3 February 2021].Google Scholar
Gharalari, A.H., Fox, S.L., Smith, M.A.H., and Lamb, R.J. 2009a. Oviposition deterrence in spring wheat, Triticum aestivum, against orange wheat blossom midge, Sitodiplosis mosellana: implications for inheritance of deterrence. Entomologia Experimentalis et Applicata, 133: 7483.10.1111/j.1570-7458.2009.00906.xCrossRefGoogle Scholar
Gharalari, A.H., Smith, M.A., Fox, S.L., and Lamb, R.J. 2009b. The relationship between morphological traits of the spring wheat spike and oviposition deterrence to orange wheat blossom midge. Entomologia Experimentalis et Applicata, 132: 182190.10.1111/j.1570-7458.2009.00873.xCrossRefGoogle Scholar
Gharalari, A.H., Smith, M.A.H., Fox, S.L., and Lamb, R.J. 2011. Volatile compounds from nonpreferred wheat spikes reduce oviposition by Sitodiplosis mosellana . The Canadian Entomologist, 143: 388391. https://doi.org/10.4039/n11-019.CrossRefGoogle Scholar
Golightly, W.H. 1952. Soil sampling for wheat-blossom midges. Annals of Applied Biology, 39: 379384.10.1111/j.1744-7348.1952.tb01021.xCrossRefGoogle Scholar
Health Canada. 2021. Re-evaluation note REV2021–02, update on the re-evaluation of chlorpyrifos [online]. Pest Management Regulatory Agency, Health Canada, Ottawa, Ontario. Available from https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/pesticides-pest-management/decisions-updates/reevaluation-note/2021/chlorpyrifos.html [accessed 29 March 2022].Google Scholar
Gries, R., Gries, G., Khaskin, G., King, S., Olfert, O.O., Kaminski, L.A., et al. 2000. Sex pheromone of orange wheat blossom midge, Sitodiplosis mosellana . Naturwissenschaften, 87: 450454.10.1007/s001140050757CrossRefGoogle ScholarPubMed
Guo, Y. 1989. Evaluation on wheat variety resistance using the method of rating relative scale. Plant Protection, 15: 33.Google Scholar
Hao, Y., Miao, J., Wu, Y., Wu, J., and Cheng, W. 2014. Comparison of efficiency of monitoring, and pesticide application methods for, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Chinese Journal of Applied Entomology, 51: 16281632.Google Scholar
Hao, Y.N., Miao, J., Wu, Y.Q., Gong, Z.J., Jiang, Y.L., Duan, Y., et al. 2013. Flight performance of the orange wheat blossom midge (Diptera: Cecidomyiidae). Journal of Economic Entomology, 106: 20432047.10.1603/EC13218CrossRefGoogle Scholar
Harris, M.O., Stuart, J.J., Mohan, M., Nair, S., Lamb, R.J., and Rohfritsch, O. 2003. Grasses and gall midges: plant defence and insect adaptation. Annual Review of Entomology, 48: 549577.10.1146/annurev.ento.48.091801.112559CrossRefGoogle Scholar
He, H., Yuan, X., Wei, C., and Yuan, F. 2006. Genetic variation of the mitochondrial ND4 region among geographical populations of Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) in China. Journal of the Kansas Entomological Society, 79: 211221.10.2317/0504.28.1CrossRefGoogle Scholar
He, X., Bonds, J., Herbst, A., and Langenakens, J. 2017. Recent development of unmanned aerial vehicle for plant protection in east Asia. International Journal of Agricultural Biological Engineering, 10: 1830.Google Scholar
Helenius, J. and Kurppa, S. 1989. Quality losses in wheat caused by the orange wheat blossom midge, Sitodiplosis mosellana . Annals of Applied Biology, 114: 409417.10.1111/j.1744-7348.1989.tb03356.xCrossRefGoogle Scholar
Hewitt, C.G. 1914. Report from the Division of Entomology for the year ending March 31, 2014. Sessional Paper No. 16. Dominion Experimental Farms, Department of Agriculture, Dominion of Canada, Ottawa, Ontario, Canada.Google Scholar
Holland, J.M. and Thomas, S.R. 2000. Do polyphagous predators help control orange wheat blossom midge, Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in winter wheat? Journal of Applied Entomology, 124: 325329.10.1046/j.1439-0418.2000.00478.xCrossRefGoogle Scholar
Hukkinen, Y. and Vappula, N.A. 1936. A survey of the occurrence of plant pests in Finland in 1935. [In Finnish.] Maataloustieteellinen aikakauskirja, 8: 115122.Google Scholar
Husberg, G.B. and Kurppa, S. 1988. Occurrence and chemical control of wheat blossom midges Sitodiplosis mosellana and Contarinia tritici in Finland. [In Finnish.] Vaxtskyddsnotiser, 52: 117123.Google Scholar
Jacquemin, G., Chavalle, S., and De Proft, M. 2014. Forecasting the emergence of the adult orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae) in Belgium. Crop Protection, 58: 613.10.1016/j.cropro.2013.12.021CrossRefGoogle Scholar
Jacquemin, G., Mahieu, A., Berger, A., and de Proft, M. 2008. The wheat blossom midge, Sitodiplosis mosellana (Géhin): risk assessment and integrated control. Association Francaise de Protection des Plantes, Alfortville, France.Google Scholar
Johansson, E. 1936. Studies and experiments on the wheat gall-midges, Contarinia tritici and Sitodiplosis (Clinodiplosis) mosellana and their control. IV: Investigations on the parasites of the wheat gall-midges: 1. Species observed in Svalof and Weilbullsholm in 1932–35. State Plant Protection Agency, Stockholm, Sweden. Pp. 119.Google Scholar
Jorgensen, A. 2019. Examining the biology and monitoring tools of Sitodiplosis mosellana in the Peace River region, Alberta. Master’s thesis. University of Alberta, Edmonton, Alberta, Canada.Google Scholar
Jorgensen, A., Evenden, M.L., Olfert, O.O., and Otani, J.K. 2021. Seasonal emergence patterns of Sitodiplosis mosellana (Diptera: Cecidomyiidae) in the Peace River region, Alberta, Canada. The Canadian Entomologist, 153: 222236. https://doi.org/10.4039/tce.2020.76.CrossRefGoogle Scholar
Jorgensen, A., Otani, J., and Evenden, M. 2020. Assessment of available tools for monitoring wheat midge (Diptera: Cecidomyiidae). Environmental Entomology, 49: 627637.10.1093/ee/nvaa017CrossRefGoogle Scholar
Katayama, J., Fukui, M., and Sasaki, H. 1987. Seasonal prevalence of adult occurrence and infestation of the wheat blossom midge Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) in Kyoto Prefecture, Japan. Japanese Journal of Applied Entomology & Zoology, 31: 4650.10.1303/jjaez.31.46CrossRefGoogle Scholar
Klee, H. 1936. Zur Kenntnis der Weizengallmucken Contarinia tritici Kirby and Sitodiplosis mosellana Géhin (aurantiaca Wagner). Inaugural Dissertation, University of Kiel, Kiel, Germany.Google Scholar
Knodel, J.J. 2021. Dry weather decreases risk for wheat midge in 2021 (06/24/21) [online]. In Crop and Pest Report. Agriculture Department, North Dakota State University, Fargo, North Dakota. Available from https://www.ndsu.edu/agriculture/ag-hub/ag-topics/crop-production/crop-pest-report/entomology/dry-weather-decreases-risk-wheat-midge [accessed 19 October 2021].Google Scholar
Knodel, J.J. and Ganehiarachchi, M. 2016. Integrated pest management of the wheat midge in North Dakota. North Dakota State University Extension Service, North Dakota State University, Fargo, North Dakota, United States of America.Google Scholar
Kogan, M. and Ortman, E.F. 1978. Antixenosis: a new term proposed to define Painter’s “nonpreference” modality of resistance. Bulletin of the Entomological Society of America, 24: 175176.10.1093/besa/24.2.175CrossRefGoogle Scholar
Kurppa, S. 1989a. Susceptibility and reaction of wheat and barley varieties grown in Finland to damage by the orange wheat blossom midge Sitodiplosis mosellana (Géhin). Annales Agriculturae Fenniae, 28: 371383.Google Scholar
Kurppa, S. 1989b. Wheat blossom midges, Sitodiplosis mosellana (Géhin) and Contarinia tritici (Kirby), in Finland during 1981–87. Annales Agriculturae Fenniae, 28: 8796.Google Scholar
Kurppa, S. and Husberg, G.B. 1989. Control of orange wheat blossom midge, Sitodiplosis mosellana (Géhin), with pyrethroids. Annales Agriculturae Fenniae, 28: 103111.Google Scholar
Lamb, R.J., McKenzie, R.H., Wise, I.L., Barker, P.S., Smith, M.A.H., and Olfert, O.O. 2000. Resistance to Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist, 132: 591605. https://doi.org/10.4039/Ent132591-5.CrossRefGoogle Scholar
Lamb, R.J., Smith, M.A.H., Wise, I.L., Clarke, P., and Clarke, J. 2001. Oviposition deterrence to Sitodiplosis mosellana (Diptera: Cecidomyiidae): a source of resistance for durum wheat (Gramineae). The Canadian Entomologist, 133: 579591. https://doi.org/10.4039/Ent133579-4.CrossRefGoogle Scholar
Lamb, R.J., Smith, M.A.H., Wise, I.L., and McKenzie, R.I.H. 2016. Resistance to wheat midge (Diptera: Cecidomyiidae) in winter wheat and the origins of resistance in spring wheat (Poaceae). The Canadian Entomologist, 148: 229238. https://doi.org/10.4039/tce.2015.48.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., Gavloski, J.E., Kaminski, L.A., and Olfert, O.O. 2002a. Making control decisions for Sitodiplosis mosellana (Diptera: Cecidomyiidae) in wheat (Gramineae) using sticky traps. The Canadian Entomologist, 134: 851854. https://doi.org/10.4039/Ent134851-6.CrossRefGoogle Scholar
Lamb, R.J., Wise, I.L., Smith, M.A.H., McKenzie, R.I.H., Thomas, J., and Olfert, O.O. 2002b. Oviposition deterrence against Sitodiplosis mosellana (Diptera: Cecidomyiidae) in spring wheat (Gramineae). The Canadian Entomologist, 134: 8596. https://doi.org/10.4039/Ent13485-1.CrossRefGoogle Scholar
Lescar, L. 1977. Current practice in integrated cereal pest and disease control in northwestern Europe (excluding Gt. Britain). In Proceedings of the 1977 British Crop Protection Conference: pests and diseases, Brighton, November 1977. Brighton, United Kingdom. Pp. 763772.Google Scholar
Lescar, L. 1984. Development of the protection of cereal against pests and diseases in France. In 1984 British Crop Protection Conference: pests and diseases: proceedings of a conference held at Brighton Metropole, England, November 19–22, 1984. Brighton, United Kingdom. Pp. 159168.Google Scholar
Li, D. 2012. Study on the occurrence regularity, the method of prediction of adults, analysis and evaluation of resistance of wheat midge, Sitodiplosis mosellana (Géhin). Master’s thesis. Hebei Agricultural University, Baoding, Hebei Province, China.Google Scholar
Li, D., Ma, C., Liu, S., Wu, Y., and He, Y. 2012. Trapping effects of sticky cards in different colors on adults of red wheat blossom midge, Sitodiplosis mosellana (Gehin). Acta Phytophylacica Sinica, 39: 390394.Google Scholar
Li, J., Li, X., and Cheng, W. 2004. Analysis and evaluation of resistance in wheat ideoplasm to wheat blossom midge (Sitodiplosis mosellana). Journal of Northwest Sci-Tech University of Agriculture and Forestry, 32: 1720.Google Scholar
Li, J., Wang, G., Ding, J., and Zhang, Q. 2000. Study on the control technology of wheat midge with pesticide. Plant Protection, 26: 3032.Google Scholar
Li, X. and Ren, Z. 1987. Preliminary report on the control of wheat midge with isofenphos-methyl. Plant Protection, 2: 2930.Google Scholar
Li, X., Wu, X., and Cheng, W. 1997a. Preliminary study on the species and predation of predatory natural enemies of wheat midge. Shaanxi Agricultural Sciences, 4: 2526.Google Scholar
Li, X., Wu, X., and Cheng, W. 1997b. Studies on the population occurrence and dynamics of parasitic wasps of wheat blossom midges. Acta Agriculturae Boreali-occidentalis Sinica, 6: 1316.Google Scholar
Li, Y., Cheng, A., Yu, H., Cheng, W., and Wu, J. 2011. Trapping efficiencies of sticky-plates to adults of the wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Journal of Northwest Sci-Tech University of Agriculture and Forestry, 39: 9296.Google Scholar
Li, Y.F., Cai, D.J., Shan, Z.J., and Zhu, Z.L. 2001. Gridded usage inventories of technical hexachlorocyclohexane and lindane for China with 1/6 latitude by 1/4 longitude resolution. Archives of Environmental Contamination, 41: 261266.Google ScholarPubMed
Mason, P.G., Olfert, O.O., Haye, T., Gariepy, T.D., Abram, P.K., and Gillespie, D.R. 2017. Risks and benefits of accidental introductions of biological control agents in Canada. In Proceedings of the 5th International Symposium on Biological Control of Arthropods, Langkawi, Malaysia, September 11–15, 2017. Edited by P.G. Mason, D.R. Gillespie, and C. Vincent. Centre for Agriculture and Bioscience International, Wallingford, United Kingdom. Pp. 68.Google Scholar
McKenzie, R.I.H., Lamb, R.J., Aung, T., Wise, I.L., Barker, P., and Olfert, O.O. 2002. Inheritance of resistance to wheat midge, Sitodiplosis mosellana, in spring wheat. Plant Breeding, 121: 383388.10.1046/j.1439-0523.2002.745267.xCrossRefGoogle Scholar
Meers, S. 2011. Alberta Crop Insect Update 2011. In Minutes of the Western Committee on Crop Pests, 51st Annual Meeting, The Grand Okanagan Hotel, Kelowna, British Columbia. Western Forum on Pest Management. 75 pp. Available from https://westernforum.org/Documents/WCCP/WCCP%20Minutes/WCCP%20MINUTES%20-%202011.pdf [accessed 4 January 2021].Google Scholar
Meers, S. 2013. Alberta Crop Insect Update 2013. In Minutes of the Western Committee on Crop Pests, 53rd Annual Meeting, Canada Inns Fort Garry, Winnipeg, Manitoba. Western Forum on Pest Management. 70 pp. Available from https://westernforum.org/Documents/WCCP/WCCP%20Minutes/Minutes%20of%20WCCP%202013.pdf [accessed 4 January 2021].Google Scholar
Miao, J., Wu, Y.Q., Gong, Z.J., He, Y.Z., Duan, Y., and Jiang, Y.L. 2013. Long-distance wind-borne dispersal of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in northern China. Journal of Insect Behavior, 26: 120129.10.1007/s10905-012-9346-4CrossRefGoogle Scholar
Midge Tolerant Stewardship Team. 2015. Midge-tolerant wheat celebrates five years. Stewardship e-newsletter [online]. Canadian Wheat Research Coalition, Calgary, Alberta, Canada. Available from http://archive.constantcontact.com/fs155/1116235661296/archive/1119302885289.html [accessed 7 April 2020].Google Scholar
Midge Tolerant Stewardship Team. 2021. Variety list [online]. Available from http://midgetolerantwheat.ca/ [accessed 14 January 2021].Google Scholar
Mircioiu, L. 2004. Development of pheromone-based monitoring of orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). Master’s thesis. Simon Fraser University, Burnaby, British Columbia, Canada.Google Scholar
Mölck, G. 2006. Erfahrungen mit Prognose und Bekämpfung des Schadauftretens von Sattelmücken und Weizengallmücken (Diptera: Cecidomyiidae) in Schleswig-Holstein. In Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin–Dahlem 55. Deutsche Pfl anzenschutztagung in Göttingen 25.–28. September 2006. Pp. 227.Google Scholar
Ni, H. and Ding, H. 1994. Dynamics and integrated management strategy of wheat midge. Bulletin of Chinese Agricultural Science, 10: 2023.Google Scholar
NDawn Center: North Dakota Agricultural Weather Network. 2021. Wheat growing degree days/growth stages and midge degree days [online]. North Dakota State University Available from https://ndawn.ndsu.nodak.edu/wheat-growing-degree-days.html [accessed 19 October 2021].Google Scholar
Oakley, J.N. 1981. Wheat blossom midges Sitodiplosis mosellana, Contarinia tritici, Limothrips cerealium, in Great Britain. Ministry of Agriculture, Fisheries, and Food, London, United Kingdom. 6 pp.Google Scholar
Oakley, J.N. 1994. Orange wheat blossom midge: a literature review and survey of the 1993 outbreak. HGCA Research Review No. 28. Home Grown Cereals Authority, London, United Kingdom. 51 pp.Google Scholar
Oakley, J.N., Cumbleton, P.C., Corbett, S.J., Saunders, P., Green, D.I., Young, J.E.B., and Rodgers, R. 1998. Prediction of orange wheat blossom midge activity and risk of damage. Crop Protection, 17: 145149.10.1016/S0261-2194(97)00097-5CrossRefGoogle Scholar
Oakley, J.N., Green, D.I., Jones, A.E., Kilpatrick, J.B., and Young, J.E.B. 1994. Forecasting the abundance of orange wheat blossom midge in wheat. In Proceedings – Brighton Crop Protection Conference, Pests and Diseases, 1994, volume 1. British Crop Protection Council, Bracknell, United Kingdom. Pp. 193198.Google Scholar
Oakley, J.N., Talbot, G., Dyer, C., Self, M.M., Freer, J.B.S., Angus, W.J., et al. 2005. Integrated control of wheat blossom midge: variety choice, use of pheromone traps and treatment thresholds. HGCA Project Report No. 363. Home Grown Cereals Authority, London, United Kingdom.Google Scholar
Olfert, O.O., Doane, J.F., and Braun, M.P. 2003. Establishment of Platygaster tuberosula, an introduced parasitoid of the wheat midge, Sitodiplosis mosellana . The Canadian Entomologist, 135: 303308. https://doi.org/10.4039/n02-074.CrossRefGoogle Scholar
Olfert, O.O., Elliott, R.H., and Hartley, S. 2009. Non-native insects in agriculture: strategies to manage the economic and environmental impact of wheat midge, Sitodiplosis mosellana, in Saskatchewan. Biological Invasions, 11: 127133.10.1007/s10530-008-9324-0CrossRefGoogle Scholar
Olfert, O.O., Mukerji, M.Y., and Doane, J.F. 1985. Relationship between infestation levels and yield loss caused by wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat in Saskatchewan. The Canadian Entomologist, 117: 593598. https://doi.org/10.4039/Ent117593-5.CrossRefGoogle Scholar
Olfert, O.O., Weiss, R.M., and Elliott, R.H. 2016. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. The Canadian Entomologist, 148: 5267. https://doi.org/10.4039/tce.2015.40.CrossRefGoogle Scholar
Olfert, O.O., Weiss, R.M., Vankosky, M.A., Hartley, S., and Doane, J.F. 2020. Modelling the tri-trophic population dynamics of a host crop (Triticum aestivum; Poaceae), a major pest insect (Sitodiplosis mosellana; Diptera: Cecidomyiidae), and a parasitoid of the pest species (Macroglenes penetrans; Hymenoptera: Pteromalidae): a cohort-based approach incorporating the effects of weather. The Canadian Entomologist, 152: 311329. https://doi.org/10.4039/tce.2020.17.CrossRefGoogle Scholar
Olsson, R. 1980. Results from our own field tests with Ambush in 1979. Vaxtskyddsrapporter Jordbruk, 12: 8392.Google Scholar
Otani, J. 2011. Barley and bugs. In 2011 Alberta Pulse Growers Zone 4 & Barley Commission Region 6 Joint Annual Meeting, Falher, Alberta, Nov 29, 2011.Google Scholar
Pivnick, K.A. and Labbe, E. 1993. Daily patterns of activity of females of the orange wheat blossom midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae). The Canadian Entomologist, 125: 725736. https://doi.org/10.4039/Ent125725-4.CrossRefGoogle Scholar
Prairie Pest Monitoring Network. 2022. Wheat midge: Sitodiplosis mosellana: historical risk maps. In Prairie Pest Monitoring Network. Edited by J. Otani, O.O. Olfert, and M.A. Vankosky. Available from https://prairiepest.ca/risk-maps/wheat-midge/ [accessed 29 March 2022].Google Scholar
Prasad, S.N. 1969. Measures employed to control gall-midge infestation. 3: Biological control. Cecidologia Indica, 4: 4357.Google Scholar
Qu, Z.G., Wen, S.M., Zhao, Y.X., Lu, Z.Y., and Sun, H. 2006. Reason analysis and control strategies on the gradually increased Sitodiplosis mosellana (Géhin) damage in Hebei Province. Journal of Hebei Agricultural Sciences, 10: 102104.Google Scholar
Ramsden, M., Kendall, S., Ellis, S., and Berry, P. 2017. A review of economic thresholds for invertebrate pests in UK arable crops. Crop Protection, 96: 3043.10.1016/j.cropro.2017.01.009CrossRefGoogle Scholar
Reeher, M.M. 1945. The wheat midge in the Pacific Northwest. United States Department of Agriculture Circular 732. United States Department of Agriculture, Washington, D.C., United States of America. 8 pp.Google Scholar
Rouillon, C., Doucet, R., and Taupin, P. 2006. Ravageurs de printemps: Cécidomyies: L’efficacité de la lutte passe par une bonne observation. Perspectives Agricoles, 322: 5861.Google Scholar
Sanderson, E.D. 1915. Insect pests of farm, garden, and orchard. First edition. Press of Braunworth & Co. Book Manufacturers, Brooklyn, New York, United States of America.Google Scholar
Saskatchewan Agriculture and Food. 1993. Control of wheat midge. In Farm facts. Queen’s Printer, Regina, Saskatchewan, Canada. 2 pp.Google Scholar
Shanower, T.G. 2005. Occurrence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid, Macroglenes penetrans (Hymenoptera: Platygasteridae), in northeastern Montana. The Canadian Entomologist, 137: 753755. https://doi.org/10.4039/n05-056.CrossRefGoogle Scholar
Shi, Z., Qiu, S., Ma, A., Xu, G., Wu, J., and Lu, L. 2002. Studies on mechanisms of biochemical resistance to blossom midge (Sitodiplosis mosellana Géhin) in wheat. Journal of Triticeae Crops, 22: 6365.Google Scholar
Shrestha, G. and Reddy, G.V.P. 2019. Field efficacy of insect pathogen, botanical and jasmonic acid for the management of wheat midge, Sitodiplosis mosellana, and the impact on adult parasitoid Macroglenes penetrans populations in spring wheat. Insect Science, 26: 523535.10.1111/1744-7917.12548CrossRefGoogle ScholarPubMed
Skuhravá, M., Skuhravy, V., and Jorgensen, J. 2006. Gall midge (Diptera: Cecidomyiidae) of Denmark. Entomologiske Meddelelser, 74: 194.Google Scholar
Smith, M.A.H. and Lamb, R.J. 2004. Causes of variation in body size and consequences for the life history of Sitodiplosis mosellana . The Canadian Entomologist, 136: 839850. https://doi.org/10.4039/n03-122.CrossRefGoogle Scholar
Smith, M.A.H., Lamb, R.J., Wise, I.L., and Olfert, O.O. 2004a. An interspersed refuge for Sitodiplosis mosellana (Diptera: Cecidomyiidae) and a biocontrol agent Macroglenes penetrans (Hymenoptera: Pteromalidae) to manage crop resistance in wheat. Bulletin of Entomological Research, 94: 179188.10.1079/BER2004291CrossRefGoogle Scholar
Smith, M.A.H., Wise, I.L., and Lamb, R.J. 2004b. Sex ratios of Sitodiplosis mosellana (Diptera: Cecidomyiidae): implications for pest management in wheat (Poaceae). Bulletin of Entomological Research, 94: 569575.10.1079/BER2004333CrossRefGoogle Scholar
Smith, M.A.H., Wise, I.L., and Lamb, R.J. 2007. Survival of Sitodiplosis mosellana (Diptera: Cecidomyiidae) on wheat (Poaceae) with antibiosis resistance: implications for the evolution of virulence. The Canadian Entomologist, 139: 133140. https://doi.org/10.4039/n06-027.CrossRefGoogle Scholar
Smith, M.C. 2005. Plant resistance to arthropods: molecular and conventional approaches. Springer Science & Business Media, Dordrecht, The Netherlands.10.1007/1-4020-3702-3CrossRefGoogle Scholar
Speyer, W. and Waede, M. 1956. Predators and parasites of the wheat gall-midges. Contribution to the biology and control of C. tritici Kirby and S. mosellana Géhin. Anzeiger fur Schadlingskunde, 29: 185191.Google Scholar
Stougaard, R.N., Bohannon, B., Picard, D., Reddy, G.V.P., Talbert, L., and Wanner, K. 2014. Orange wheat blossom midge. In Montana State University Extension MontGuide. MT201403AG. Montana State University, Bozeman, Montana, United States of America. 8 pp.Google Scholar
Sun, S., Ni, H., Ding, H., Qu, Z., and Zhang, S. 1998. Studies on the mechanism of biochemical resistance of wheat to wheat midge. Scientia Agricultura Sinica, 31: 2429.Google Scholar
Thambugala, D., Pozniak, C.J., Kumar, S., Burt, A.J., Wise, I.L., Smith, M.A.H., et al. 2020. Genetic analysis of oviposition deterrence to orange wheat blossom midge in spring wheat. Theoretical and Applied Genetics, 134: 647660.10.1007/s00122-020-03720-yCrossRefGoogle ScholarPubMed
Thompson, B.M. and Reddy, G.V.P. 2016. Status of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid, Macroglenes penetrans (Hymenoptera: Pteromalidae), in Montana. Crop Protection, 84: 125131.10.1016/j.cropro.2016.03.009CrossRefGoogle Scholar
United Nations Environment Programme. 2009. Stockholm Convention on Persistent Organic Pollutants (POPS): text and annexes as amended in 2009. Secretariat of the Stockholm Convention on Persistent Organic Pollutants, Geneva, Switzerland. 56 pp.Google Scholar
United States Environmental Protection Agency. 2021. EPA takes action to address risk from chlorpyrifos and protect children’s health [online]. Available from https://www.epa.gov/newsreleases/epa-takes-action-address-risk-chlorpyrifos-and-protect-childrens-health [accessed 21 October 2021].Google Scholar
Van Driesche, R., Cock, M.J.W., Winston, R.L., Reardon, R., and Weeks, R.D. Jr. 2018. Catalog of species introduced into Canada, Mexico, the USA, or the USA overseas territories for classical biological control of arthropods, 1985–2018. United States Department of Agriculture, Forest Service, Forest Health Assessment and Applied Sciences Team. Morgantown, West Virginia, United States of America. 196 pp.Google Scholar
Vera, C.L., Fox, S.L., DePauw, R.M., Smith, M.A.H., Wise, I.L., Clarke, F.R., et al. 2013. Relative performance of resistant wheat varietal blends and susceptible wheat cultivars exposed to wheat midge, Sitodiplosis mosellana (Géhin). Canadian Journal of Plant Science, 93: 5966.10.4141/cjps2012-019CrossRefGoogle Scholar
Webster, F.M. 1891. The wheat midge, Diplosis tritici, Kirby. Bulletin of the Ohio Agricultural Experiment Station, 2: 99114.Google Scholar
Weeraddana, C.D.S., Wise, I.L., Lamb, R.J., Wolfe, S., Wist, T., McCartney, C.A., et al. 2021. A laboratory method for mass rearing the orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae). The Canadian Entomologist, 153: 828836. https://doi.org/10.4039/tce.2021.46.CrossRefGoogle Scholar
Wen, S.M., Zhao, Y.X., Qu, Z.G., Liu, G., Wang, L., and Wang, J. 2007. The utilization and evaluation of resistance in wheat varieties to Sitodiplosis mosellana . Journal of the Agricultural University of Hebei, 30: 7174.Google Scholar
Wise, I.L. and Lamb, R.J. 2004. Diapause and emergence of Sitodiplosis mosellana (Diptera: Cecidomyiidae) and its parasitoid Macroglenes penetrans (Hymenoptera: Pteromalidae). The Canadian Entomologist, 136: 7790. https://doi.org/10.4039/n03-032.CrossRefGoogle Scholar
Wise, I.L., Lamb, R.J., and Smith, M.A.H. 2001. Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). The Canadian Entomologist, 133: 255267. https://doi.org/10.4039/Ent133255-2.CrossRefGoogle Scholar
Wright, A.T. and Doane, J. 1987. Wheat midge infestation of spring cereals in northeastern Saskatchewan. Canadian Journal of Plant Science, 67: 117120.10.4141/cjps87-013CrossRefGoogle Scholar
Wu, Y., Duan, A., Zhang, Z., Liu, C., Liu, S., Jiang, Y., et al. 2013. Resistance grading method and evaluation in wheat varieties to orange wheat blossom midge, Sitodiplosis mosellana (Diptera: Cecidomyiidae) in China. Acta Agronomica Sinica, 39: 21712176.10.3724/SP.J.1006.2013.02171CrossRefGoogle Scholar
Wu, Y., Miao, J., Gong, Z., Duan, Y., Jiang, Y., and Li, T. 2014. Progress in research on the biology, ecology and control of the wheat blossom midge. Chinese Journal of Applied Entomology, 51: 14501458.Google Scholar
Wu, Y., Yu, Z., Chen, H., Miao, J., Jiang, Y., and Duan, Y. 2010. Preliminary report on the evaluation of the distribution of wheat midge in China using the MAXENT model. In Proceedings of the Annual Conference of the Chinese Society of Plant Protection, 2010, Kongming Wu, Hebi, Henan Province, China. Pp 314319.Google Scholar
Wu, Y., Zhao, W., Jiang, Y., and Duan, Y. 2009. Monitoring on adults of Sitodiplosis mosellana (Géhin) with yellow sticky traps. Acta Phytophylacica Sinica, 36: 381382.Google Scholar
Yuan, F., Hua, B., Wu, J., He, H., and Zhu, C. 2003. Studies on plagues caused by Sitodiplosis mosellana (Géhin) and their control. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 31: 4348.Google Scholar
Zadoks, J.C., Chang, T.T., and Konzak, C.F. 1974. A decimal code for the growth stages of cereals. Weed Research, 14: 415421.10.1111/j.1365-3180.1974.tb01084.xCrossRefGoogle Scholar
Zeng, X., Guo, W., and Lu, C. 2001. Preliminary report of the suitable period of controlling wheat midge. Plant Protection Technology and Extension, 21: 68.Google Scholar
Zhang, J., Liu, Y., Tian, X., Xu, Y., and Cheng, W. 2014. Effectiveness of seven pesticides in controlling wheat blossom midge and wheat aphids. Chinese Journal of Applied Entomology, 51: 548553.Google Scholar
Zhang, W., Qian, F., Ren, L., Yang, H., Gao, F., and Zhang, C. 2015. Preliminary study on economic threshold of wheat midge in Guanzhong region. China Plant Protection, 35: 3134.Google Scholar
Zhang, Y., Li, X., and Zhao, H. 2003. A neural network approach to occurrence degree forecasting for wheat midge. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 31: 912.Google Scholar
Supplementary material: File

Dufton et al. supplementary material

Dufton et al. supplementary material

Download Dufton et al. supplementary material(File)
File 111.7 KB