Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T15:29:01.913Z Has data issue: false hasContentIssue false

Lethal and sublethal effects of some insecticides recommended for wild blueberry on the pollinator Bombus impatiens

Published online by Cambridge University Press:  28 May 2012

A.E. Gradish
Affiliation:
School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
C.D. Scott-Dupree
Affiliation:
School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
A.J. Frewin
Affiliation:
Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
G.C. Cutler*
Affiliation:
Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, Nova Scotia, Canada B2N 5E3
*
1Corresponding author (e-mail: ccutler@nsac.ca).

Abstract

Managed and wild colonies of common eastern bumble bee (Bombus impatiens Cresson) (Hymenoptera: Apidae) are effective pollinators of wild blueberry (Vaccinium angustifolium Aiton) (Ericaceae) in Atlantic Canada. Because insecticides are used during bloom to manage insect pests, bumble bees may be at risk of exposure. We therefore assessed the susceptibility of B. impatiens to some insecticides used or projected for use in blueberry pest management. Workers were killed by topical applications of spinosad, spinetoram, deltamethrin, and phosmet, but not flubendiamide. Similarly, when ingested in honey solution, spinetoram and deltamethrin were toxic, whereas flubendiamide did not cause mortality up to double its recommended label rate. In another experiment, workers were fed one sublethal dose of contaminated honey solution and placed in microcolonies to assess impacts on feeding, life span, and reproduction. The highest concentration of deltamethrin (17 mg a.i./L) reduced feeding. Workers treated with deltamethrin had shortened life spans and produced fewer males. Flubendiamide (2000 mg a.i./L) and spinetoram (0.8 mg a.i./L) caused no sublethal effects. These results indicate that flubendiamide should be safe to apply to blueberries where B. impatiens is foraging, while some other insecticides we tested may be hazardous under different exposure scenarios.

Résumé

Les colonies aménagées et sauvages du bourdon fébrile commun (Bombus impatiens Cresson) (Hymenoptera: Apidae) sont des pollinisateurs efficaces de l'airelle à feuilles étroites (Vaccinium angustifolium Aiton) (Ericaceae) dans les provinces de l'Atlantique. Parce qu'on utilise des insecticides durant la floraison pour contrôler les insectes ravageurs, les bourbons risquent d'y être exposés. C'est pourquoi nous avons évalué la vulnérabilité de B. impatiens à quelques insecticides qu'on utilise ou projette d'utiliser pour la lutte contre les ravageurs des airelles. Les ouvrières sont tuées par des traitements topiques aux insecticides spinosad, spinétorame, deltaméthrine et phosmet, mais non par ceux au flubendiamide. De même, lorsqu'ils sont ingérés dans une solution de miel, le spinetoram et la deltaméthrine sont toxiques, alors que le flubendiamide ne cause pas de mortalité tant que la dose n'est pas le double de celle recommandée sur l’étiquette. Dans une autre expérience, nous avons alimenté les ouvrières d'une dose sublétale de la solution de miel contaminée et les avons placées en microcolonies pour évaluer les impacts sur l'alimentation, la durée de vie et la reproduction. Les concentrations les plus fortes de deltaméthrine (17 mg m.a./L) a réduit l'alimentation. Les ouvrières traitées à la deltaméthrine vivent moins longtemps et produisent moins de mâles. Le flubendiamide (2000 mg m.a./L) et le spinétorame (0.8 et 8.0 mg m.a./L) n'ont aucun effet sublétal. Nos résultats indiquent que le flubendiamide peut être appliqué sans danger aux airelles butinées par B. impatiens, alors que d'autres insecticides que nous avons évalués peuvent s'avérer nocifs sous divers scénarios d'exposition.

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldershof, S. 1999. Determination of the acute contact LD50 of spinosad (formulated as the 480 G/LSC, NAF-85) for the bumble bee Bombus terrestris L. Report GHE-P-7875, Dow AgroSciences, Indianapolis.Google Scholar
Aliouane, Y., el Hassani, A.K., Gary, V., Armengaud, C., Lambin, M., Gauthier, M. 2009. Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior. Environmental Toxicology and Chemistry, 28: 113122.CrossRefGoogle ScholarPubMed
Bailey, J., Scott-Dupree, C., Harris, R., Tolman, J., Harris, B. 2005. Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada. Apidologie, 36: 111.CrossRefGoogle Scholar
Banda, H.J.Paxton, R.J. 1991. Pollination of greenhouse tomatoes by bees. Acta Horticulturae, 288: 194198.CrossRefGoogle Scholar
Besard, L., Mommaerts, V., Abdu-Alla, G., Smagghe, G. 2011. Lethal and sublethal side-effect assessment supports a more benign profile of spinetoram compared with spinosad in the bumblebee Bombus terrestris. Pest Management Science, 67: 541547.CrossRefGoogle ScholarPubMed
Brittain, C.A., Vighi, M., Bommarco, R., Settele, J., Potts, S.G. 2010. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic and Applied Ecology, 11: 106115.CrossRefGoogle Scholar
Desjardins, È.De Oliveira, D. 2006. Commercial bumble bee Bombus impatiens (Hymenoptera: Apidae) as a pollinator in lowbush blueberry (Ericale: Ericaceae) fields. Journal of Economic Entomology, 99: 443449.CrossRefGoogle ScholarPubMed
Desneaux, N., Decourtye, A., Delpuech, J. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52: 81106.CrossRefGoogle Scholar
Devillers, J., Decourtye, A., Budzinski, H., Pham-Delègue, M.H., Cluzeau, S., Maurin, G. 2003. Comparative toxicity and hazards of pesticides to Apis and non-Apis bees. A chemometrical study. SAR and QSAR in Environmental Research, 14: 389403.CrossRefGoogle Scholar
Dripps, J., Olson, B., Sparks, T., Crouse, G. 2008. Spinetoram: how artificial intelligence combined natural fermentation with synthetic chemistry to produce a new spinosyn insecticide [online]. Plant Health Progress, doi:10.1094/PHP-2008-0822-01-PS. Available from http://www.plantmanagementnetwork.org/pub/php/perspective/2008/spinetoram/ [accessed 26 October 2011].Google Scholar
Free, J.B. 1993. Insect pollination of crops, 2nd ed. Academic Press, San Diego.Google Scholar
Goulson, D., Hanley, M.E., Darvill, B., Ellis, J.S., Knight, M.E. 2005. Causes of rarity in bumblebees. Biological Conservation, 122: 18.CrossRefGoogle Scholar
Gradish, A.E., Scott-Dupree, C.D., Cutler, G.C. 2012. Susceptibility of Megachile rotundata to insecticides used in wild blueberry production in Atlantic Canada. Journal of Pest Science, 85: 133140.CrossRefGoogle Scholar
Gradish, A.E., Scott-Dupree, C.D., Shipp, L., Harris, C.R., Ferguson, G. 2010. Effect of reduced-risk pesticides for use in greenhouse vegetable production on Bombus impatiens (Hymenoptera: Apidae). Pest Management Science, 66: 142146.CrossRefGoogle ScholarPubMed
Hall, T. 2007. Ecological effects assessment of flubendiamide. Pflanzenschutz-Nachrichten Bayer, 60: 167182.Google Scholar
Javorek, S.K., Mackenzie, K.E., Vander Kloet, S.P. 2002. Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: Vaccinium angustifolium). Annals of the Entomological Society of America, 95: 345351.CrossRefGoogle Scholar
Johansen, C.A. 1977. Pesticides and pollinators. Annual Review of Entomology, 22: 177192.CrossRefGoogle Scholar
Johansen, C.A.Mayer, D.F. 1990. Pollinator protection: a bee and pesticide handbook. Wicwas Press, Cheshire.Google Scholar
Johansen, C.A., Mayer, D.F., Eves, J., Kious, C.W. 1983. Pesticides and bees. Environmental Entomology, 12: 15131518.CrossRefGoogle Scholar
Kevan, P.G. 1999. Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agriculture, Ecosystems and Environment, 74: 373393.CrossRefGoogle Scholar
Klein, A.-M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., et al. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274: 303313.CrossRefGoogle ScholarPubMed
Mayes, M.A., Thompson, G.D., Husband, B., Miles, M.M. 2003. Spinosad toxicity to pollinators and associated risk. Reviews of Environmental Contamination and Toxicology, 179: 3771.Google ScholarPubMed
Morandin, L.A., Winston, M.L., Franklin, M.T., Abbott, V.A. 2005. Lethal and sub-lethal effects of spinosad on bumble bees (Bombus impatiens Cresson). Pest Management Science, 61: 619626.CrossRefGoogle ScholarPubMed
Plowright, R.C.Laverty, T.M. 1987. Bumble bees and crop pollination in Ontario. Proceedings of the Entomological Society of Ontario, 118: 155160.Google Scholar
Potter, C. 1952. An improved laboratory apparatus for applying direct sprays and surface films, with data on the electrostatic charge on atomized spray fluids. Annals of Applied Biology, 39: 128.CrossRefGoogle Scholar
Ramanaidu, K., Hardman, J.M., Percival, D.C., Cutler, G.C. 2011. Laboratory and field susceptibility of blueberry spanworm (Lepidoptera: Geometridae) to conventional and reduced-risk insecticides. Crop Protection, 30: 16431648.CrossRefGoogle Scholar
Sampson, M.G., McCully, K.V., Sampson, D.L. 1990. Weeds of eastern Canada blueberry fields. Nova Scotia Agricultural College Bookstore, Truro.Google Scholar
SAS Institute. 2005. PROC users manual, version 9.1, 6th ed. SAS Institute, Cary.Google Scholar
Scott-Dupree, C.D., Conroy, L., Harris, C.R. 2009. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). Journal of Economic Entomology, 102: 177182.CrossRefGoogle ScholarPubMed
Stephenson, G.R.Solomon, K.R. 2007. Pesticides and the environment. Canadian Network of Toxicology Centres Press, Guelph.Google Scholar
Stubbs, C.S.Drummond, F.A. 2001. Bombus impatiens (Hymenoptera: Apidae): an alternative to Apis mellifera (Hymenoptera: Apidae) for lowbush blueberry pollination. Journal of Economic Entomology, 94: 609616.CrossRefGoogle ScholarPubMed
Tasei, J.N. 2002. Impacts of agrochemicals on non-Apis bees. In Honey bees: estimating the environmental impact of chemicals. Edited by J. Devillers and M.-H. Pham-Delegue. Taylor and Francis, New York. pp. 101131.CrossRefGoogle Scholar
Tasei, J.N., Lerin, J., Ripault, G. 2000. Sub-lethal effects of imidacloprid on bumble bees, Bombus terrestris (Hymenoptera: Apidae), during a laboratory feeding test. Pest Management Science, 56: 784788.3.0.CO;2-T>CrossRefGoogle Scholar
Tasei, J.N., Sabik, H., Pirastru, L., Langiu, E., Blanche, J.M., Fournier, J., et al. 1994. Effects of sublethal doses of deltamethrin (Decis Ce) on Bombus terrestris. Journal of Apicultural Research, 33: 129135.CrossRefGoogle Scholar
Thompson, H.M. 2001. Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie, 32: 305321.CrossRefGoogle Scholar
Thompson, H.M.Hunt, L.V. 1999. Extrapolating from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology, 8: 147166.CrossRefGoogle Scholar
Velthuis, H.H.W.van Doorn, A. 2006. A century of advances in bumble bee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37: 421451.CrossRefGoogle Scholar
Williams, P.H.Osborne, J.L. 2009. Bumblebee vulnerability and conservation world-wide. Apidologie, 40: 367387.CrossRefGoogle Scholar
Winfree, R. 2010. The conservation and restoration of wild bees. Annals of the New York Academy of Sciences, 1195: 169197.CrossRefGoogle ScholarPubMed
Wu, J., Li, J., Peng, W., Hu, F. 2010. Sensitivities of three bumble bee species to four pesticides applied commonly in greenhouses in China. Insect Science, 17: 6772.CrossRefGoogle Scholar