Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T16:04:16.700Z Has data issue: false hasContentIssue false

SPECIFICITY TESTING OF THE NUCLEAR POLYHEDROSIS VIRUS OF THE GYPSY MOTH, LYMANTRIA DISPAR (L.) (LEPIDOPTERA: LYMANTRIIDAE)

Published online by Cambridge University Press:  31 May 2012

K.N. Barber
Affiliation:
Environmental Research and Assessment, Forest Pest Management Institute, Forestry Canada, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
W.J. Kaupp
Affiliation:
Environmental Research and Assessment, Forest Pest Management Institute, Forestry Canada, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
S.B. Holmes
Affiliation:
Environmental Research and Assessment, Forest Pest Management Institute, Forestry Canada, PO Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7

Abstract

An aqueous suspension of the nuclear polyhedrosis virus of Lymantria dispar (L.), LdNPV, was fed to third-instar caterpillars of L. dispar and 46 species of nontarget Lepidoptera in four successive. 24- to 48-h doses of 3 × 104 polyhedral inclusion bodies (PIBs) in 2 μL applied to small pellets of artificial diet or isolated surfaces of foliage. Adults of the fly Cyrtophleba coquilletti Aldr., and adult males of the bee Megachile rotundata (Fabr.), were assayed with a single dose of 1.2 × 105 PIBs in 2 μL of 30% sucrose solution. Only those specimens that completely consumed the dose(s) were transferred to appropriate maintenance conditions for 7–10 days whereupon they were frozen. Samples of macerates of experimental specimens were dot-blotted onto nylon membranes on which whole genomic LdNPV DNA-probing and chemiluminescence techniques were used lo show presence of LdNPV DNA. With reference to positive and negative controls, the 48 nontarget species were diagnosed as nonpermissive of LdNPV but the target species was clearly infected. This study demonstrates a high degree of host-specificity of LdNPV.

Résumé

Une suspension aqueuse du virus de la polyhédrose nucléaire de Lymantria dispar (L.), LdNPV, a été offerte en nourriture à des chenilles de troisième stade de L. dispar et à des chenilles de 46 espèces non cibles, à raison de quatre doses successives 24–48 h de 3 × 104 corpuscules à inclusions polyhédriques (PIB) dans 2 μL, appliquées à de petites boulettes d’une régime alimentaire artificiel ou à des surfaces isolées de feuillage. Des adultes de la mouche Cyrtophleba coquilletti Aldr., et des mâles adultes de l’abeille Megachile rotundata (Fabr.) ont reçu une dose unique de 1,2 × 105 PIB dans 2 μL d’une solution de sucrose 30%. Seuls les spécimens qui ont consommé des doses complètes ont été mis en conditions adéquates de survie durant 7–10 jours après lesquels ils ont été ongelés. Des échantillons de spécimens expérimentaux macérés ont été soumis à la méthode du dot blot sur des membranes de nylon et la présence d’ADN de LdNPV a été éprouvée par utilisation d’une sonde moléculaire propre à reconnaître le génome complet de LdNPV et par des techniques de chimioluminescence. En comparant les résultats à des témoins positifs et négatifs, les 48 espèces non cibles ont été reconnues insensibles au LdNPV, mais l’espèce cible était nettement infectée. Cette étude met en évidence le fort de spécificité d’hôte du virus LdNPV.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.CrossRefGoogle Scholar
Addy, N.D. 1969. Rearing the forest tent caterpillar on an artificial diet. Journal of Economic Entomology 62: 270271.CrossRefGoogle Scholar
Anonymous. 1975. Susceptibility of Insects to P. dispar NPV. USDA Forest Service, Northeastern Forest Experiment Station, Hamden, CT. Unpublished Report. 2 pp. + Table.Google Scholar
Anonymous. 1990. Guidelines for Registration of Naturally Occurring Microbial Pest Control Agents. Agriculture Canada, Food Production and Inspection Branch, Memorandum to Registrants R–90–03: 53 pp. Ottawa, Ontario.Google Scholar
Arif, B.M., and Brown, K.W.. 1975. Purification and properties of a nuclear polyhedrosis virus from Choristoneura fumiferana. Canadian Journal of Microbiology 21: 12241231.Google Scholar
Bell, R.A., Owens, C.D., Shapiro, M., and Tardif, J.R.. 1981. Development of mass-rearing technology. pp. 599–655 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research toward Integrated Pest Management. U.S.D.A. Technical Bulletin 1584: 757 pp. Washington, DC.Google Scholar
Bishop, D.H.L. 1989. Genetically engineered viral insecticides—A progress report 1986–1989. Pesticide Science 27: 173189.CrossRefGoogle Scholar
Cantwell, G.E., Knox, D.A., Lehnert, T., and Michael, A.S.. 1966. Mortality of the honey bee, Apis mellifera, in colonies treated with certain biological insecticides. Journal of Invertebrate Pathology 8: 228233.CrossRefGoogle ScholarPubMed
Cantwell, G.E., and Lehnert, T.. 1979. Lack of effect of certain microbial insecticides on the honeybee. Journal of Invertebrate Pathology 33: 381382.Google Scholar
Cunningham, J.C., Kaupp, W.J., and Howse, G.M.. 1991. Development of nuclear polyhedrosis virus for control of gypsy moth (Lepidoptera: Lymantriidae) in Ontario. I. Aerial spray trials in 1988. The Canadian Entomologist 123: 601609.CrossRefGoogle Scholar
Doyle, C.J., Hirst, M.L., Cory, J.S., and Entwistle, P.F.. 1990. Risk assessment studies: Detailed host range testing of wild-type cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae), nuclear polyhedrosis virus. Applied and Environmental Microbiology 56: 27042710.Google Scholar
Evans, H.F. 1981. Quantitative assessment of the relationships between dosage and response of the nuclear polyhedrosis virus of Mamestra brassicae. Journal of Invertebrate Pathology 37: 101109.Google Scholar
Fuxa, J.R. 1989. Fate of released entomopathogens with reference to risk assessment of genetically engineered microorganisms. Bulletin of the Entomological Society of America Winter 1989: 1224.Google Scholar
Goerzen, D.W., Erlandson, M.A., and Moore, K.C.. 1990. Effect of two insect viruses and two entomopathogenic fungi on larval and pupal development in the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hymenoptera: Megachilidae). The Canadian Entomologist 122: 10391040.Google Scholar
Gröner, A. 1990. Safety to nontarget invertebrates of baculoviruses. pp. 135–147 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. CRC, Boca Raton, FL. 259 pp.Google Scholar
Hodges, R.W., Dominick, T., Davis, D.R., Ferguson, D.C., Franclemont, J.G., Munroe, E.G., and Powell, J.A.. 1983. Check List of the Lepidoptera of America North of Mexico. E.W. Classey Ltd. and The Wedge Entomological Research Foundation, London. pp. i–xxiv and 1284.Google Scholar
Hostetter, D.L., and Puttler, B.. 1991. A new broad host spectrum nuclear polyhedrosis virus isolated from a celery looper, Anagrapha falcifera (Kirby), (Lepidoptera: Noctuidae). Environmental Entomology 20: 14801488.Google Scholar
Kaupp, W.J., and Ebling, P.M.. 1993. Horseradish peroxidase-labelled probes and enhanced chemiluminescence to detect baculoviruses in gypsy moth and eastern spruce budworm larvae. Journal of Virological Methods 44: 8998.CrossRefGoogle ScholarPubMed
Keating, S.T., Schultz, J.C., and Yendol, W.G.. 1990. The effect of diet on gypsy moth (Lymantria dispar) larval midgut pH, and its relationship with larval susceptibility to a baculovirus. Journal of Invertebrate Pathology 56: 317326.CrossRefGoogle Scholar
Keating, S.T., and Yendol, W.G.. 1987. Influence of selected host plants on gypsy moth (Lepidoptera: Lymantriidae) larval mortality caused by a baculovirus. Environmental Entomology 16: 459462.Google Scholar
Knox, D.A. 1970. Tests of certain insect viruses on colonies of honeybees. Journal of Invertebrate Pathology 16: 152.CrossRefGoogle Scholar
Lewis, F.B., and Podgwaite, J.D.. 1981. Safety evaluations. Gypsy moth nucleopolyhedrosis virus. pp. 475–479 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research toward Integrated Pest Management. U.S.D.A. Technical Bulletin 1584: 757 pp. Washington, DC.Google Scholar
Lewis, F.B., Rollinson, W.D., and Yendol, W.G.. 1981. Laboratory evaluation. Gypsy moth nucleopolyhedrosis virus. pp. 455–461 in Doane, C.C., and McManus, M.L. (Eds.), The Gypsy Moth: Research toward Integrated Pest Management. U.S.D.A. Technical Bulletin 1584: 757 pp. Washington, DC.Google Scholar
Lobinger, G. 1991. Untersuchungen zur empfindlichkeit des nonnenspinners, Lymantria monacha L. (Lep., Lymantriidae) gegenüber zwei kernpolyedervirusstämmen des schwammspinners, Lymantria dispar L. (Lep., Lymantriidae). Journal of Applied Entomology 112: 484492.Google Scholar
Longworth, J.F., and Cunningham, J.C.. 1968. The activation of occult nuclear-polyhedrosis viruses by foreign nuclear polyhedra. Journal of Invertebrate Pathology 10: 361367.CrossRefGoogle Scholar
Magnoler, A. 1974. Bioassay of a nucleopolyhedrosis virus of the gypsy moth, Porthetria dispar. Journal of Invertebrate Pathology 23: 190196.Google Scholar
Martignoni, M.E. 1983. In vivo host specificity of VIRIN-ENSh. pp. 43–49 in Ignoffa, C.M., Martignoni, M.E., and Vaughn, J.L. (Eds.), A Comparison of the US (GYPCHEK) and USSR (VIRIN-ENSh) Preparations of the Nuclear Polyhedrosis Virus of the Gypsy Moth, Lymantria dispar. Results of research conducted under Project V-01.0705, Microbiological Control of Insect Pests, US/USSR Joint Working Group on the Production of Substances by Microbiological Means under US/USSR Agreement on Science and Technology. 65 pp.Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist 97: 5863.Google Scholar
Munroe, E. 1979. Lepidoptera. pp. 427–481 in Danks, H.V. (Ed.), Canada and its Insect Fauna. Memoirs of the Entomological Society of Canada 108: 573 pp.Google Scholar
Opler, P.A. 1992. A Field Guide to Eastern Butterflies. The Peterson Field Guide Series. Houghton Mifflin, Boston, MA. pp. i–xvii and 1396.Google Scholar
Payne, C.C. 1986. Insect pathogenic viruses as pest control agents. pp. 183–200 in Franz, J.M. (Ed.), Biological Plant and Health Protection. G. Fischer-Verlag, Stuttgart. pp. i–vii and 1341.Google Scholar
Podgwaite, J.D., Reardon, R.C., Walton, G.S., Venables, L., and Kolodny-Hirsch, D.M.. 1992. Effects of aerially applied Gypchek on gypsy moth (Lepidoptera: Lymantriidae) populations in Maryland woodlots. Journal of Economic Entomology 85: 11361139.Google Scholar
Shapiro, M., Martignoni, M.E., Cunningham, J.C., and Goodwin, R.H.. 1982. Potential use of the saltmarsh caterpillar as a production host for nucleopolyhedrosis viruses. Journal of Economic Entomology 75: 6971.Google Scholar
Smith, K.M., Hills, G.J., and Rivers, C.F.. 1959. Polyhedroses in neuropterous insects. Journal of Insect Pathology 1: 431437.Google Scholar
Smith, K.M., and Xeros, N.. 1952. Transmission of polyhedral viruses between different insect species. Nature 170: 492.CrossRefGoogle ScholarPubMed
Smith, K.M., and Xeros, N.. 1953. Cross-innoculation studies with polyhedral viruses. Symposium on Interactions of Viruses and Cells, Rome, 1953. pp. 8196 and 3 plates.Google Scholar
Stairs, G., Stetson, D., and Butz, J.. 1991. Effects of an isolate of gypsy moth, Porthetria (Lymantria) dispar, nuclear polyhedrosis virus on tobacco hornworm, Manduca sexta, larvae. Journal of Invertebrate Pathology 57: 191199.Google Scholar
Tiedje, J.M., Colwell, R.K., Grossman, Y.L., Hodson, R.E., Lenski, R.E., Mack, R.N., and Regal, P.J.. 1989. The planned introduction of genetically engineered organisms: Ecological considerations and recommendations. Ecology 70: 298315.Google Scholar
Vail, P.V., Jay, D.L., and Hunter, D.K.. 1973. Infectivity of a nuclear polyhedrosis virus from the alfalfa looper, Autographa californica, after passage through alternate hosts. Journal of Invertebrate Pathology 21: 1620.CrossRefGoogle Scholar
Weiser, J., and Verber, J.. 1954. The possibilities of biological control of the fall webworm Hyphantria cunea Drury. Zoologické a Entomologické Listy (Folia Zoologica et Entomologica) 3: 5568.Google Scholar
Whitehead, T.P., Thorpe, G.H.G., Carter, T.J.N., Groucutt, C., and Kricka, L.J.. 1983. Enhanced luminescence procedure for sensitive determination of peroxidase-labelled conjugates in immunoassay. Nature 305: 158159.Google Scholar
Wigley, P.J. 1980. Counting microorganisms. pp. 29–35 in Kalmakoff, J., and Longworth, J.F. (Eds.), Microbial Control of Insect Pests. New Zealand Department of Science and Industrial Research Bulletin 228: 102 pp. Wellington.Google Scholar
Yendol, W.G., Bryant, J.E., and McManus, M.L.. 1990. Penetration of oak canopies by a commercial preparation of Bacillus thuringiensis applied by air. Journal of Economic Entomology 83: 173179.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. xiv + 718 pp.Google Scholar