Published online by Cambridge University Press: 20 November 2018
The problem which motivated the writing of this paper is that of finding structure behind the decomposition of the sl3 representation spaces V* ⊗ W = Hom(V, W) for finite dimensional irreducible sl3-modules V and W. For sl2 this extends the classical Clebsch-Gordon problem. The question has been considered for sl3 in a computational way in [5]. In this paper we build a conceptual algebraic framework going beyond the enveloping algebra of sl3.
For each dominant integral weight α let Vα be an irreducible representation of sl3 of highest weight α. It is well known that, for weights α, μ, λ, the multiplicity of Vλ in Hom(Vα, Vα+μ) is bounded by the multiplicity of μ in Vλ, with equality for generic α. This suggests the possibility of a single construction of highest weight vectors of weight X in Hom(Vα, Vα+μ) which is valid for all a.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.