Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T07:29:57.746Z Has data issue: false hasContentIssue false

Characterizations of Vitali Conditions with Overlap in Terms of Convergence of Classes of Amarts

Published online by Cambridge University Press:  20 November 2018

Annie Millet
Affiliation:
Ohio State University, Columbus, Ohio
Louis Sucheston
Affiliation:
Ohio State University, Columbus, Ohio
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a series of fundamental papers [20], [21], [22], [23], K. Krickeberg introduced 'Vitali’ conditions on σ-algebras and showed that they are sufficient for convergence of properly bounded martingales, and supermartingales. It is now known that the conditions V (= V), and V′ are both sufficient and necessary for convergence of L1-bounded amarts, and ordered amarts (Astbury [1]; [24], [25]); an amart (ordered amart) is a process (Xt) such that the net (EXτ)τ∈T* converges, where T* is the net of simple (ordered) stopping times. We undertake here to similarly characterize the Vitali conditions Vp, 1 ≦ p < ∞, in terms of convergence of properly defined classes of amarts. (In terms of convergence of L-bounded martingales, Krickeberg himself [22] was able to characterize V1.)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1979

References

1. Astbury, K., On Amarts and other topics, Ph.D. Dissertation, Ohio State University, (1976). Also Amarts indexed by directed sets, Ann. Prob.. 6 (1978), 267278.Google Scholar
2. Austin, D. G., Edgar, G. A. and Ionescu Tulcea, A., Pointwise convergence in terms of expectations, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 30 (1974), 1726.Google Scholar
3. Baxter, J. R., Pointwise in terms of weak convergence, Proc. Amer. Math. Soc. 46 (1974), 395398.Google Scholar
4. Bellow, A., Les amarts uniformes, C. R. Acad. Sci. Paris, 284 Série A, 12951298.Google Scholar
5. Brunei, A. and Sucheston, L., Sur les amarts à valeurs vectorielles, C. R. Acad. Sci. Paris, 283 Série A, 10371040.Google Scholar
6. Chacon, R. V., A stopped proof of convergence, Adv. in Math. 14 (1974), 365368.Google Scholar
7. Chacon, R. V. and Sucheston, L., On convergence of vector-valued asymptotic martingales, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 33 (1975), 5559.Google Scholar
8. Chatterji, S. D., Martingale convergence and the Radon-Nikodym theorem, Math. Scand. 22 (1968), 2141.Google Scholar
9. Dieudonné, J., Sur un théorème de Jessen, Fund. Math. 37 (1950), 242248.Google Scholar
10. Doob, J. L., Stochastic processes (Wiley, New York, 1953).Google Scholar
11. Dvoretzky, A., On stopping times directed convergence, Bull. Amer. Math. Soc. 82, No. 2 (1976), 347349.Google Scholar
12. Edgar, G. A., and Sucheston, L., Amarts: A class of asymptotic martingales, J. Multivariate Anal. 6 (1976), 193221; 572-591.Google Scholar
13. Edgar, G. A., and Sucheston, L., The Riesz decomposition for vector-valued amarts, Zeit. Wahrscheinlichkeitstheorie verw. Geb. 36 (1976), 8592.“Google Scholar
14. Edgar, G. A., and Sucheston, L., On vector-valued amarts and dimension of Banach spaces, Zeit. Wahrscheinlichkeitstheorie verw. Gebiet. 39 (1977), 213216.Google Scholar
15. Edgar, G. A., and Sucheston, L., Martingales in the limit and amarts, Proc. Amer. Math. Soc. 67 (1977), 315320.Google Scholar
16. Ghoussoub, N. and Sucheston, L., A Refinement of the Riesz decomposition for Amarts and semiamarts, J. Multivariate Analysis. 8 (1978), 146150.Google Scholar
17. Hayes, C. A. and Pane, C. Y., Derivations and martingales (Springer-Verlag, New York, 1970).Google Scholar
18. Helms, L. L., Mean convergence of martingales, Trans. Amer. Math. Soc. 87 (1958), 439446.Google Scholar
19. Krengel, U. and Sucheston, L., Semiamarts and finite values, Bull. Amer. Math. Soc. 83, 745-747. See also Advances Prob. 4 (1978), 197265.Google Scholar
20. Krickeberg, K., Convergence of martingales with a directed index set, Trans. Amer. Math. Soc. 83 (1956), 313337.Google Scholar
21. Krickeberg, K., Stochastische Konvergenz von Semimartingalen, Math. Z. 66 (1957), 470486.Google Scholar
22. Krickeberg, K., Notwendige Konvergenzbedingungen bei Martingalen und verwandten Prozessen, Transactions of +.he Second Prague conference on information theory, statistical decision functions, random processes [Prague, 1959], (1960) 279305, Prague, Publishing House of the Czechoslovak Academy of Sciences.Google Scholar
23. Krickeberg, K. and Pauc, C., Martingales et dérivation, Bull. Soc. Math. Franc. 01 (1963), 455544.Google Scholar
24. Millet, A. and Sucheston, L., Classes d1 amarts filtrants et conditions de Vitali, C. R. Acad. Sci. Paris, 286 Série A, 835837.Google Scholar
25. Millet, A. and Sucheston, L., Convergence of classes of amarts indexed by directed sets, Can. J. Math., to appear.Google Scholar
26. Mucci, A. G., Another Martingale convergence theorem, Pacific J. Math. 64 (1976), 539541.Google Scholar
27. Neveu, J., Discrete parameter martingales (North Holland, Amsterdam, 1975).Google Scholar