Published online by Cambridge University Press: 20 November 2018
This viewpoint of studying projective planes was given in my previous paper (12). It is discussed in other papers: Hall (4, 6, 7), Maisano (16), Lombardo-Radice (14, 15), Wagner (19). In particular, we consider how to make identifications in the free plane, or how identifications are forced when one begins with a non-degenerate quadrangle and makes free extensions of this quadrangle of a known plane. We shall continue to develop this topic using the notations and definitions of the previous paper (12). We consider the number of subplanes of certain planes, finding exact values in the cases of the known order-nine planes, and deriving a lower bound in a general case. We prove a theorem concerning the structure of all singly generated planes. We give an example to show that this structure is not definitive. Finally, we prove that a specific Walker-Knuth plane is singly generated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.