Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-26T22:21:46.419Z Has data issue: false hasContentIssue false

Diffusion on Lie Groups (III)

Published online by Cambridge University Press:  20 November 2018

N. TH. Varopoulos*
Affiliation:
Universite Paris VI Institut de Matematiques 4, Place Jussieu 75252 Paris, Cedex 05 and, I.U.F. France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For amenable Lie groups of NC-type the heat kernel satisfies pt ~ t-a. We find the exact value of a ≥ 0.

Résumé

Résumé

Pour les groupes de Lie amenables de type NC le noyeau de la chaleur satisfait pt ~ t-a. On trouve la valeur exacte de a ≥ 0.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

1. Alexopoulos, G., A lower estimate for central probability of poly cyclic groups, Canad. J. Math. 44 (1992), 897910.Google Scholar
2. Ancona, A., Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier (4) 28 (1978), 162213.Google Scholar
3. Bourbaki, N., Eléments de mathématiques, Livre VI, Intégration, Herman, 1963.Google Scholar
4. Chavel, I., Eigenvalues in Riemannian Geometry, Academic Press, 1984.Google Scholar
5. Davies, E.B., Gaussian Upper bounds for Heat Kernels of some second order operators on Riemannian Manifolds. J. Functional Anal. 80 (1988) 16-32.Google Scholar
6. Fabes, E., Garofalo, N. and Salsa, S., A backwards Harnack inequality and Fatou theorem for non negative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536565.Google Scholar
7. Guivarch, Y., Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333379.Google Scholar
8. Helgason, S., Groups and Geometric Analysis, Academic Press, 1984.Google Scholar
9. Heurteaux, Y., Solutions positives et mesures harmoniques pour des opérateurs paraboliques dans des domaines “Lipschitziens”, Ann. Inst. Fourier (3) 41 (1991).Google Scholar
10. Hörmander, L., Hypoelliptic second order equations, Acta Math. 119 (1967), 147171.Google Scholar
11. ltô, K. and McKean, H.P., Jr., Diffusion Processes and their sample Paths, Springer-Verlag, 1974.Google Scholar
12. Jacobson, N., Basic Algebra, Vol. I and II, W. H. Freeman and Co., New York, 1989 Google Scholar
13. Kenig, C.-E., Harmonic Analysis Techniques for Second order Elliptic Boundary Value Problems, Amer. Math. Soc. CBMS 83.Google Scholar
14. Pemantle, R. and Peres, Y., Critical random Walks in Random Environment on trees, preprint.Google Scholar
15. Varadarajan, V.S., Lie groups Lie algebras and their representations, Prentice-Hall, 1984.Google Scholar
16. Varopoulos, N.Th. , Analysis on Lie groups, Rev. Mat. Iberoamericana, to appear.Google Scholar
17. Varopoulos, N.Th., Diffusion on Lie groups, Canad. J. Math. (2) 46 (1994), 438448.Google Scholar
18. Varopoulos, N.Th., Diffusion on Lie groups (II), Canad. J. Math. (5) 46 (1994), 10731093.Google Scholar
19. Varopoulos, N.Th., Wiener-Hopf Theory and Non Unimodular Groups, J. Funct. Anal. (2) 120 (1994), 467483.Google Scholar
20. Varopoulos, N.Th. and Mustapha, S., Mimeographed Lecture Notes, Univ. Paris VI, 19941995.Google Scholar
21. Varopoulos, N.Th., Saloff-Coste, L. and Coulhon, T., Analysis and Geometry on Groups, Cambridge Univ. Press, 1992.Google Scholar
22. Warner, J.G., Harmonic analysis on semisimple Lie groups (I), Springer Verlag.Google Scholar