Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:43:58.778Z Has data issue: false hasContentIssue false

Extremal Properties Of Hermitian Matrices

Published online by Cambridge University Press:  20 November 2018

M. Marcus
Affiliation:
United States Naval Ordnance Test Station, California Institute Pasadena, University of British Columbia.
J. L. McGregor
Affiliation:
California Institute of Technology
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In (1) Fan showed that if A is a Hermitian matrix with eigenvalues λ1 ≤ … ≤ λn then, for k ≤ n,

,

,

where X1, … , xk run over all sets of k orthonormal (o.n.) vectors in unitary n-space V.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1956

References

1. Fan, Ky, On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. N.A.S. (U.S.A.), 35 (1949), 652655.Google Scholar
2. Flanders, H., A note on the Sylvester-Franke theorem, Amer. Math. Monthly 60 (1954), 8, 543.Google Scholar
3. Hardy, G. H., Littlewood, J. E., Polya, G., Inequalities (Cambridge, 2nd ed., 1952).Google Scholar
4. Horn, A., On the singular values of a product of completely continuous operators, Proc. N.A.S. (U.S.A.), 86 (1950), 374.Google Scholar
5. Ostrowski, A., Sur quelques applications des fonctions convexes et concaves au sens de I. Schur, J. Math. Pures Appl. (9) 31 (1952), 253292.Google Scholar
6. Wedderburn, J. H. M., Lectures on matrices, Amer. Math. Soc. Colloq. Pub., 17 (1934)Google Scholar