Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T15:33:31.508Z Has data issue: false hasContentIssue false

Holomorphic Generation of Continuous Inverse Algebras

Published online by Cambridge University Press:  20 November 2018

Harald Biller*
Affiliation:
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany e-mail: harald.biller@gmx.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study complex commutative Banach algebras (and, more generally, continuous inverse algebras) in which the holomorphic functions of a fixed $n$-tuple of elements are dense. In particular, we characterize the compact subsets of ${{\mathbb{C}}^{n}}$ which appear as joint spectra of such $n$ -tuples. The characterization is compared with several established notions of holomorphic convexity by means of approximation conditions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2007

References

[1] Arens, R. and Calderón, A. P., Analytic functions of several Banach algebra elements. Ann. of Math. (2) 62(1955), 204216.Google Scholar
[2] Behnke, H. and Stein, K., Konvergente Folgen von Regularitätsbereichen und die Meromorphiekonvexität, Math. Ann. 116(1938), 204216.Google Scholar
[3] Biller, Harald, Algebras of complex analytic germs. Preprint 2331, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/shadow/pp2331.html. Google Scholar
[4] Biller, Harald, Analyticity and naturality of the multi-variable functional calculus. To appear in Expositiones Mathematicae. http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/shadow/pp2332.html. Google Scholar
[5] Biller, Harald, Continuous inverse algebras and infinite-dimensional linear Lie groups, Habilitationsschrift, Technische Universität Darmstadt, 2004, http://www.mathematik.tu-darmstadt.de/∼biller. Google Scholar
[6] Biller, Harald, Continuous inverse algebras with involution, Preprint 2346, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/shadow/pp2346.html. Google Scholar
[7] Björk, J.-E., Holomorphic convexity and analytic structures in Banach algebras. Ark. Mat. 9(1971), 3954.Google Scholar
[8] Blackadar, B., K-Theory for Operator Algebras. Second edition. Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge, 1998.Google Scholar
[9] Bonsall, F. F. and Duncan, J., Complete Normed Algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete 80, Springer-Verlag, New York, 1973.Google Scholar
[10] Bost, J.-B., Principe d’Oka, K-théorie et systèmes dynamiques non commutatifs. Invent. Math. 101(1990), no. 2, 261333.Google Scholar
[11] Bourbaki, N., Éléments de mathématique. Fasc. XXXII. Théories spectrales. Chapitre I: Algèbres normées. Chapitre II: Groupes localement compacts commutatifs, Actualités Scientifiques et Industrielles, No. 1332, Hermann, Paris, 1967.Google Scholar
[12] Connes, A., Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62(1985), 257360.Google Scholar
[13] Dierolf, S. and Wengenroth, J., Inductive limits of topological algebras. Linear Topol. Spaces Complex Anal. 3(1997), 4549,Google Scholar
[14] Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140(1960), 94123.Google Scholar
[15] Dugundji, J., Topology. Allyn and Bacon, Boston, MA, 1966.Google Scholar
[16] Engelking, R., General topology. Second edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.Google Scholar
[17] Floret, K., Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew.Math. 247(1971), 155195.Google Scholar
[18] Forstnerič, F., A smooth holomorphically convex disc in C2 that is not locally polynomially convex. Proc. Amer. Math. Soc. 116(1992), no. 2, 411415.Google Scholar
[19] Gamelin, T. W., Uniform algebras. Prentice-Hall, Englewood Cliffs, NJ, 1969.Google Scholar
[20] Glöckner, H., Algebras whose groups of units are Lie groups. Studia Math. 153(2002), no. 2, 147177.Google Scholar
[21] Gramsch, B., Relative Inversion in der Störungstheorie von Operatoren und. -Algebren. , Math. Ann. 269(1984), no. 1, 2771.Google Scholar
[22] Grauert, H. and Remmert, R., Theorie der Steinschen Räume. Grundlehren der Mathematischen Wissenschaften 227, Springer-Verlag, Berlin, 1977.Google Scholar
[23] Gunning, R. C. and Rossi, H., Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ, 1965.Google Scholar
[24] Harvey, R. and Wells, R. O. Jr., Compact holomorphically convex subsets of a Stein manifold. Trans. Amer. Math. Soc. 136(1969), 509516.Google Scholar
[25] Hewitt, E. and Stromberg, K., Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. Graduate Texts in Mathematics 25, Springer-Verlag, New York, 1975.Google Scholar
[26] Hörmander, L., An Introduction to Complex Analysis in Several Variables. Second revised edition. North-Holland Publishing, Amsterdam, 1973.Google Scholar
[27] Hörmander, L. and Wermer, J., Uniform approximation on compact sets in Cn. Math. Scand. 23(1968), 521 (1968).Google Scholar
[28] Kriegl, A. and Michor, P. W., The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs 53, American Mathematical Society, Providence, RI, 1997.Google Scholar
[29] Maier, P., Central extensions of topological current algebras. In: Geometry and Analysis on Finiteand Infinite-Dimensional Lie Groups, Banach Center Publ. 55, Polish Acad. Sci., Warsaw, 2002, pp. 6176.Google Scholar
[30] Maier, P. and Neeb, K.-H., Central extensions of current groups. Math. Ann. 326(2003), no. 2, 367415.Google Scholar
[31] Michael, E. A., Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952(1952), no. 11.Google Scholar
[32] Neeb, K.-H., Current groups for non-compact manifolds and their central extensions. In: Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor. Phys. 5, de Gruyter, Berlin, 2004, pp. 109183.Google Scholar
[33] Neeb, K.-H., Locally convex root graded Lie algebras. Travaux mathématiques 14, (Univ. du Luxembourg), 2003 pp. 25120.Google Scholar
[34] Neeb, K.-H. and Wagemann, F., The universal central extension of the holomorphic current algebra. Manuscripta Math. 112(2003), no. 4, 441458.Google Scholar
[35] Phillips, N. C., K-theory for Fréchet algebras. Internat. J. Math. 2(1991), no. 1, 77129.Google Scholar
[36] Range, R. M., Holomorphic functions and integral representations in several complex variables. Graduate Texts in Mathematics 108, Springer-Verlag, New York, 1986.Google Scholar
[37] Rossi, Hugo, Holomorphically convex sets in several complex variables. Ann. of Math. (2) 74(1961), 470493.Google Scholar
[38] Rossi, Hugo, On envelopes of holomorphy. Comm. Pure Appl. Math. 16(1963), 917.Google Scholar
[39] Rudin, Walter, Functional Analysis. McGraw-Hill, New York, 1973.Google Scholar
[40] Rudin, Walter, Real and Complex Analysis. Third edition. McGraw-Hill, New York, 1987.Google Scholar
[41] Šilov, G. E., On the decomposition of a commutative normed ring into a direct sum of ideals. Amer. Math. Soc. Transl. (2) 1(1955), 3748.Google Scholar
[42] Siu, Y. T., Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38(1976/77), no. 1, 89100.Google Scholar
[43] Taylor, Joseph L., Several Complex Variables with Connections to Algebraic Geometry and LIe Groups. Graduate Studies in Mathematics 46, American Mathematical Society, Providence, RI, 2002.Google Scholar
[44] Waelbroeck, Lucien, Le calcul symbolique dans les algèbres commutatives. J. Math. Pures Appl. (9) 33(1954), 147186.Google Scholar
[45] Waelbroeck, Lucien, Les algèbres à inverse continu. C. R. Acad. Sci. Paris 238(1954), 640641.Google Scholar
[46] Waelbroeck, Lucien, The holomorphic functional calculus and non-Banach algebras. In: Algebras in Analysis, Academic Press, London, 1975, pp. 187251.Google Scholar
[47] Waelbroeck, Lucien, The holomorphic functional calculus as an operational calculus. In: Spectral Theory, Banach Center Publ. 8, PWN, Warsaw, 1982, pp. 513552.Google Scholar
[48] Wells, R. O. Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds. Trans. Amer. Math. Soc. 132(1968), 245262.Google Scholar
[49] Zame, William R., Holomorphic convexity of compact sets in analytic spaces and the structure of algebras of holomorphic germs. Trans. Amer. Math. Soc. 222(1976), 107127.Google Scholar
[50] Zame, William R., Existence, uniqueness and continuity of functional calculus homomorphisms. Proc. London Math. Soc. (3) 39(1979), no. 1, 7392.Google Scholar